Unknown

Dataset Information

0

Automated Methods Enable Direct Computation on Phenotypic Descriptions for Novel Candidate Gene Prediction.


ABSTRACT: Natural language descriptions of plant phenotypes are a rich source of information for genetics and genomics research. We computationally translated descriptions of plant phenotypes into structured representations that can be analyzed to identify biologically meaningful associations. These representations include the entity-quality (EQ) formalism, which uses terms from biological ontologies to represent phenotypes in a standardized, semantically rich format, as well as numerical vector representations generated using natural language processing (NLP) methods (such as the bag-of-words approach and document embedding). We compared resulting phenotype similarity measures to those derived from manually curated data to determine the performance of each method. Computationally derived EQ and vector representations were comparably successful in recapitulating biological truth to representations created through manual EQ statement curation. Moreover, NLP methods for generating vector representations of phenotypes are scalable to large quantities of text because they require no human input. These results indicate that it is now possible to computationally and automatically produce and populate large-scale information resources that enable researchers to query phenotypic descriptions directly.

SUBMITTER: Braun IR 

PROVIDER: S-EPMC6965352 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automated Methods Enable Direct Computation on Phenotypic Descriptions for Novel Candidate Gene Prediction.

Braun Ian R IR   Lawrence-Dill Carolyn J CJ  

Frontiers in plant science 20200110


Natural language descriptions of plant phenotypes are a rich source of information for genetics and genomics research. We computationally translated descriptions of plant phenotypes into structured representations that can be analyzed to identify biologically meaningful associations. These representations include the entity-quality (EQ) formalism, which uses terms from biological ontologies to represent phenotypes in a standardized, semantically rich format, as well as numerical vector represent  ...[more]

Similar Datasets

| S-EPMC5925780 | biostudies-literature
| S-EPMC8673552 | biostudies-literature
| S-EPMC7456795 | biostudies-literature
| S-EPMC5907177 | biostudies-literature
| S-EPMC2605476 | biostudies-literature
| S-EPMC7013622 | biostudies-literature
| S-EPMC5440167 | biostudies-literature
| S-EPMC4623769 | biostudies-literature
| S-EPMC3627593 | biostudies-literature
| S-EPMC11251147 | biostudies-literature