Project description:The treatment landscape of metastatic renal cell carcinoma (mRCC) has been transformed with the advent of antiangiogenics, notably tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor receptor (VEGFR), and immune checkpoint inhibitors (ICIs). Both treatment options have improved outcomes of patients and modified the natural history of mRCC. Clinical investigations have focused on evaluating combination regimens containing ICIs and VEGFR-directed TKIs. Namely, the combinations of axitinib plus pembrolizumab (KEYNOTE-426) and axitinib plus avelumab (JAVELIN RENAL 101) have shown improved outcomes compared with sunitinib in treatment-naïve patients with mRCC. In this review, we discuss the clinical data of single-agent TKIs and ICIs in mRCC and the rationale for the combination ICIs and TKIs based on preclinical and clinical evidence. We also explore the current challenges for regimen selection and development of predictive biomarkers.
Project description:There has been substantial evolution in the treatment of metastatic renal cell carcinoma with notable changes in the first-line setting. Currently, doublet combination therapy with either two immune checkpoint inhibitors or a combination of an immune checkpoint and tyrosine kinase inhibitor is considered the standard of care. The doublet combination therapies have demonstrated significantly improved clinical outcomes. A recently conducted trial (COSMIC-313) showed superior efficacy with a triplet combination of cabozantinib, nivolumab, and ipilimumab when compared to a placebo, nivolumab, and ipilimumab but at the cost of additional toxicity. Many other combination treatments, such as pembrolizumab plus lenvatinib plus belzutifan (NCT04976634), are being investigated, possibly leading to more options in the first-line setting in the future.
Project description:Advanced renal cell carcinoma is a biologically heterogeneous disease with multiple treatment options that largely involve immunotherapy and/or anti-angiogenic therapies. The choice of initial and subsequent therapy depends on both clinical and biological considerations. Here, we describe the application of recent data to clinical practice.
Project description:The most common subtype of renal cell carcinoma is clear cell renal cell carcinoma (ccRCC). While localized ccRCC can be cured with surgery, metastatic disease has a poor prognosis. Recently, immunotherapy has emerged as a promising approach for advanced ccRCC. This review provides a comprehensive overview of the evolving immunotherapeutic landscape for metastatic ccRCC. Immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 and CTLA-4 inhibitors have demonstrated clinical efficacy as monotherapies and in combination regimens. Combination immunotherapies pairing ICIs with antiangiogenic agents, other immunomodulators, or novel therapeutic platforms such as bispecific antibodies and chimeric antigen receptor (CAR) T-cell therapy are areas of active research. Beyond the checkpoint blockade, additional modalities including therapeutic vaccines, cytokines, and oncolytic viruses are also being explored for ccRCC. This review discusses the mechanisms, major clinical trials, challenges, and future directions for these emerging immunotherapies. While current strategies have shown promise in improving patient outcomes, continued research is critical for expanding and optimizing immunotherapy approaches for advanced ccRCC. Realizing the full potential of immunotherapy will require elucidating mechanisms of response and resistance, developing predictive biomarkers, and rationally designing combination therapeutic regimens tailored to individual patients. Advances in immunotherapy carry immense promise for transforming the management of metastatic ccRCC.
Project description:Previously a malignancy with few therapeutic options, metastatic renal cell carcinoma (mRCC) treatment is rapidly evolving. Although cytokine therapies (interferon-a, interleukin-2) have been used less frequently over the past decade, recent approval of an immune checkpoint inhibitor, nivolumab, has led to a resurgence in immune therapy for mRCC. With greater understanding of the complex and dynamic interaction between the tumor and the immune system, numerous new immunotherapies are being studied for mRCC. In this article, we review the mechanism of action, clinical outcomes and toxicity profiles of both clinically approved and selected investigational immunotherapies. Either alone or in combination, these novel agents are encouraging for the future of mRCC therapy.
Project description:The approval of immunotherapeutic agents and immunotherapy-based combination strategies in recent years has revolutionized the treatment of patients with advanced renal cell carcinoma (aRCC). Nivolumab, a programmed death 1 (PD-1) immune checkpoint inhibitor monoclonal antibody, was approved as monotherapy in 2015 for aRCC after treatment with a VEGF-targeting agent. In April 2018, the combination of nivolumab and ipilimumab, a CTLA-4 inhibitor, was approved for intermediate- and poor-risk, previously untreated patients with aRCC. Then, in 2019, combinations therapies consisting of pembrolizumab (anti-PD-1) or avelumab (anti-PD-ligand (L) 1) with axitinib (a VEGF receptor tyrosine kinase inhibitor) were also approved to treat aRCC and are likely to produce dramatic shifts in the therapeutic landscape. To address the rapid advances in immunotherapy options for patients with aRCC, the Society for Immunotherapy of Cancer (SITC) reconvened its Cancer Immunotherapy Guidelines (CIG) Renal Cell Carcinoma Subcommittee and tasked it with generating updated consensus recommendations for the treatment of patients with this disease.
Project description:Immune checkpoint blockade (ICB) results in durable disease control in a subset of patients with advanced renal cell carcinoma (RCC), but mechanisms driving resistance are poorly understood. We characterize the single-cell transcriptomes of cancer and immune cells from metastatic RCC patients before or after ICB exposure. In responders, subsets of cytotoxic T cells express higher levels of co-inhibitory receptors and effector molecules. Macrophages from treated biopsies shift toward pro-inflammatory states in response to an interferon-rich microenvironment but also upregulate immunosuppressive markers. In cancer cells, we identify bifurcation into two subpopulations differing in angiogenic signaling and upregulation of immunosuppressive programs after ICB. Expression signatures for cancer cell subpopulations and immune evasion are associated with PBRM1 mutation and survival in primary and ICB-treated advanced RCC. Our findings demonstrate that ICB remodels the RCC microenvironment and modifies the interplay between cancer and immune cell populations critical for understanding response and resistance to ICB.
Project description:In renal-cell carcinoma (RCC), tumor-reactive T-cell responses can occur spontaneously or in response to systemic immunotherapy with cytokines and immune checkpoint inhibitors. Cancer vaccines and engineered T-cell therapies are designed to selectively augment tumor antigen-specific CD8+ T-cell responses with the goal to elicit tumor regression and avoid toxicities associated with nonspecific immunotherapies. In this review, we provide an overview of the central role of T-cell immunity in the treatment of advanced RCC. Clinical outcomes for antigen-targeted vaccines or other T-cell-engaging therapies for RCC are summarized and evaluated, and emerging new strategies to enhance the effectiveness of antigen-specific therapy for RCC are discussed.
Project description:Systemic therapy strategies in the setting of localized and locally advanced renal cell carcinoma (RCC) have continued to evolve in two directions: as adjuvant therapy (to reduce risk of recurrence or progression in high risk localized groups), or as neoadjuvant therapy as a strategy to render primary renal tumors amenable to planned surgical resection in settings where radical resection or nephron-sparing surgery was not thought to be safe or feasible. In the realm of adjuvant therapy, the results of phase III randomized clinical trials have been mixed and contradictory; nonetheless based on the findings of the landmark S-TRAC study, the tyrosine kinase inhibitor Sunitinib has been approved as an adjuvant agent in the United States. In the realm of neoadjuvant therapy, presurgical tumor reduction has been demonstrated in a number of phase II studies utilizing targeted molecular agents. The advent of immunomodulation through checkpoint inhibition as first line therapy for metastatic RCC represents an exciting horizon for adjuvant and neoadjuvant strategies. This article reviews the current status and future prospects of adjuvant and neoadjuvant immunotherapy in localized and locally advanced RCC.