Unknown

Dataset Information

0

Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants.


ABSTRACT: Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms underlying AOA-specific inhibition, we show that complex mixtures of organic compounds, such as yeast extract, were highly inhibitory to all AOA strains but not to the AOB strain. By testing individual organic compounds, we reveal strong inhibitory effects of organic compounds with high metal complexation potentials implying that the inhibitory mechanism for AOA can be explained by the reduced bioavailability of an essential metal. Our results further demonstrate that the inhibitory effect on AOA can be alleviated by copper supplementation, which we observed for pure AOA cultures in a defined medium and for AOA inoculated into nitrifying sludge. Our study offers a novel mechanistic explanation for the relatively low abundance of AOA in most WWTPs and provides a basis for modulating the composition of nitrifying communities in both engineered systems and naturally occurring environments.

SUBMITTER: Gwak JH 

PROVIDER: S-EPMC6976641 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants.

Gwak Joo-Han JH   Jung Man-Young MY   Hong Heeji H   Kim Jong-Geol JG   Quan Zhe-Xue ZX   Reinfelder John R JR   Spasov Emilie E   Neufeld Josh D JD   Wagner Michael M   Rhee Sung-Keun SK  

The ISME journal 20191017 2


Consistent with the observation that ammonia-oxidizing bacteria (AOB) outnumber ammonia-oxidizing archaea (AOA) in many eutrophic ecosystems globally, AOB typically dominate activated sludge aeration basins from municipal wastewater treatment plants (WWTPs). In this study, we demonstrate that the growth of AOA strains inoculated into sterile-filtered wastewater was inhibited significantly, in contrast to uninhibited growth of a reference AOB strain. In order to identify possible mechanisms under  ...[more]

Similar Datasets

| S-EPMC5889132 | biostudies-other
| S-EPMC5300884 | biostudies-literature
| S-EPMC7058409 | biostudies-literature
| S-EPMC1533803 | biostudies-literature
| S-EPMC4879546 | biostudies-other
| S-EPMC3029776 | biostudies-literature
| S-EPMC9278323 | biostudies-literature
| S-EPMC7568300 | biostudies-literature
| S-EPMC6801142 | biostudies-literature
| S-EPMC6480550 | biostudies-literature