Unknown

Dataset Information

0

Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti.


ABSTRACT: Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries.

SUBMITTER: Ross PA 

PROVIDER: S-EPMC6977724 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti.

Ross Perran A PA   Axford Jason K JK   Yang Qiong Q   Staunton Kyran M KM   Ritchie Scott A SA   Richardson Kelly M KM   Hoffmann Ary A AA  

PLoS neglected tropical diseases 20200123 1


Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011  ...[more]

Similar Datasets

| S-EPMC4961373 | biostudies-literature
| S-EPMC8670162 | biostudies-literature
| S-EPMC7190183 | biostudies-literature
| S-EPMC4161343 | biostudies-literature
| S-EPMC8901071 | biostudies-literature
2024-05-27 | GSE268280 | GEO
| S-EPMC4849757 | biostudies-literature
| S-EPMC4929456 | biostudies-literature
| S-EPMC8715424 | biostudies-literature
| S-EPMC10980184 | biostudies-literature