Unknown

Dataset Information

0

EndNote: Feature-based classification of networks.


ABSTRACT: Network representations of systems from various scientific and societal domains are neither completely random nor fully regular, but instead appear to contain recurring structural features. These features tend to be shared by networks belonging to the same broad class, such as the class of social networks or the class of biological networks. Within each such class, networks describing similar systems tend to have similar features. This occurs presumably because networks representing similar systems would be expected to be generated by a shared set of domain specific mechanisms, and it should therefore be possible to classify networks based on their features at various structural levels. Here we describe and demonstrate a new hybrid approach that combines manual selection of network features of potential interest with existing automated classification methods. In particular, selecting well-known network features that have been studied extensively in social network analysis and network science literature, and then classifying networks on the basis of these features using methods such as random forest, which is known to handle the type of feature collinearity that arises in this setting, we find that our approach is able to achieve both higher accuracy and greater interpretability in shorter computation time than other methods.

SUBMITTER: Barnett I 

PROVIDER: S-EPMC6980283 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

EndNote: Feature-based classification of networks.

Barnett Ian I   Malik Nishant N   Kuijjer Marieke L ML   Mucha Peter J PJ   Onnela Jukka-Pekka JP  

Network science (Cambridge University Press) 20190923 3


Network representations of systems from various scientific and societal domains are neither completely random nor fully regular, but instead appear to contain recurring structural features. These features tend to be shared by networks belonging to the same broad class, such as the class of social networks or the class of biological networks. Within each such class, networks describing similar systems tend to have similar features. This occurs presumably because networks representing similar syst  ...[more]

Similar Datasets

| S-EPMC7417299 | biostudies-literature
| S-EPMC9606371 | biostudies-literature
| S-EPMC4127204 | biostudies-other
| S-EPMC7189237 | biostudies-literature
| S-EPMC5285364 | biostudies-literature
| S-EPMC7641846 | biostudies-literature
| S-EPMC10493321 | biostudies-literature
| S-EPMC4083411 | biostudies-literature
| S-EPMC6445890 | biostudies-literature
| S-EPMC10368662 | biostudies-literature