Unknown

Dataset Information

0

A Study of the Effect of 5 at.% Sn on the Micro-Structure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si Based Alloys with Al and/or Cr Additions.


ABSTRACT: This paper presents the results of a systematic study of Nb-24Ti-18Si based alloys with 5 at.% Sn addition. Three alloys of nominal compositions (at.%), namely Nb-24Ti-18Si-5Cr-5Sn (ZX4), Nb-24Ti-18Si-5Al-5Sn (ZX6), and Nb-24Ti-18Si-5Al-5Cr-5Sn (ZX8), were studied to understand how the increased Sn concentration improved oxidation resistance. In all three alloys there was macrosegregation, which was most severe in ZX8 and the primary ?Nb5Si3 transformed completely to ?Nb5Si3 after heat treatment. The Nbss was not stable in ZX6, the Nb3Sn was stable in all three alloys, and the Nbss and C14-NbCr2 Laves phase were stable in ZX4 and ZX8. The 5 at.% Sn addition suppressed pest oxidation at 800 °C but not scale spallation at 1200 °C. At both temperatures, a Sn-rich area with Nb3Sn, Nb5Sn2Si, and NbSn2 compounds developed below the scale. This area was thicker and continuous after oxidation at 1200 °C and was contaminated by oxygen at both temperatures. The contamination of the Nbss by oxygen was most severe in the bulk of all three alloys. Nb-rich, Ti-rich and Nb and Si-rich oxides formed in the scales. The adhesion of the latter on ZX6 at 1200 °C was better, compared with the alloys ZX4 and ZX8. At both temperatures, the improved oxidation was accompanied by a decrease and increase respectively of the alloy parameters VEC (Valence Electron Concentration) and ?, in agreement with the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration). Comparison with similar alloys with 2 at.% Sn addition showed (a) that a higher Sn concentration is essential for the suppression of pest oxidation of Nb-24Ti-18Si based alloys with Cr and no Al additions, but not for alloys where Al and Cr are in synergy with Sn, (b) that the stability of Nb3Sn in the alloy is "assured" with 5 at.% Sn addition, which improves oxidation with/out the presence of the Laves phase and (c) that the synergy of Sn with Al presents the "best" oxidation behaviour with improved scale adhesion at high temperature.

SUBMITTER: Xu Z 

PROVIDER: S-EPMC6981790 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Study of the Effect of 5 at.% Sn on the Micro-Structure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si Based Alloys with Al and/or Cr Additions.

Xu Zhen Z   Utton Claire C   Tsakiropoulos Panos P  

Materials (Basel, Switzerland) 20200106 1


This paper presents the results of a systematic study of Nb-24Ti-18Si based alloys with 5 at.% Sn addition. Three alloys of nominal compositions (at.%), namely Nb-24Ti-18Si-5Cr-5Sn (ZX4), Nb-24Ti-18Si-5Al-5Sn (ZX6), and Nb-24Ti-18Si-5Al-5Cr-5Sn (ZX8), were studied to understand how the increased Sn concentration improved oxidation resistance. In all three alloys there was macrosegregation, which was most severe in ZX8 and the primary βNb<sub>5</sub>Si<sub>3</sub> transformed completely to αNb<su  ...[more]

Similar Datasets

| S-EPMC6212920 | biostudies-literature
| S-EPMC6164265 | biostudies-literature
| S-EPMC7602085 | biostudies-literature
| S-EPMC7504593 | biostudies-literature
| S-EPMC8715753 | biostudies-literature
| S-EPMC9267193 | biostudies-literature
| S-EPMC6317196 | biostudies-literature
| S-EPMC8537113 | biostudies-literature
| S-EPMC10722592 | biostudies-literature
| S-EPMC6109093 | biostudies-literature