Project description:Given the unprecedented efficacy of EGFR tyrosine kinase inhibitors (TKI) in advanced EGFR-mutant lung cancer, adjuvant TKI therapy is an appealing strategy. However, there are conflicting findings regarding the potential benefit of adjuvant EGFR-TKI in patients with lung cancer harboring EGFR mutations. To better understand these results, we studied the natural history of lung cancers which recurred despite adjuvant TKI.Patients with recurrent EGFR-mutant lung cancer following adjuvant TKI were identified using an Institutional Review Board-approved mechanism. Recurrent cancer specimens were tested for resistance mutations. Sensitivity to retreatment with EGFR-TKI was evaluated.Twenty-two patients with cancers harboring an EGFR sensitizing mutation received adjuvant erlotinib or gefitinib for a median of 17 months (range 1-37 months). T790M was more common in cancers which recurred while receiving TKI than in those which recurred after stopping TKI (67% vs. 0%, P = 0.011). Fourteen patients who developed recurrence after stopping EGFR-TKI were retreated, with a median time to progression of 10 months and radiographic response seen in 8 of 11 patients with evaluable disease (73%).Recurrence of EGFR-mutant lung cancer after stopping adjuvant TKI should not preclude a trial of TKI retreatment; a phase II trial of erlotinib in this setting is underway. Studies of adjuvant EGFR-TKI will underestimate the potential survival benefit of adjuvant TKI for patients with EGFR-mutant lung cancers if retreatment at recurrence is not given.
Project description:Small molecule tyrosine kinase inhibitors (TKIs) have transformed the management of advanced non-small-cell lung cancer (NSCLC) harboring activating epithelial growth factor receptor (EGFR) mutations, while the efficacy of TKIs in the adjuvant setting remains unclear. We collected the data of 209 EGFR-mutant NSCLC patients receiving complete resection from 2010 to 2013. Study end points were disease-free survival (DFS) and overall survival (OS). Among the eligible patients, 41 (19.6%) received EGFR TKIs in the adjuvant treatment. The 3-year DFS of adjuvant EGFR TKIs treatment group (70.5%, 95% CI, 54.6-86.4%) was significantly superior that control group (50.2%, 95% CI, 40-60.4%; log-rank P = 0.014). TKIs treatment (HR, 0.51; 95% CI, 0.29-0.97; P = 0.04) was significantly associated with improved DFS in multivariate Cox analysis. No significant difference was observed in 3-year OS between two groups (73.1% [58.0-88.2%] vs 61.8% [52.2-71.4%], log-rank P = 0.21). Propensity-score matching further confirmed that adjuvant TKIs treatment extended the DFS (log-rank P = 0.024), but did not improve OS (log-rank P = 0.40). Our analysis revealed that adjuvant EGFR TKIs treatment was beneficial for early-stage NSCLC patients harboring activating EGFR mutations after complete resection.
Project description:Osimertinib has become a standard of care in the first-line treatment of advanced-stage non-small-cell lung cancer (NSCLC) harboring exon 19 and 21 activating mutations in the EGFR gene. Nevertheless, the 18.9-month median progression-free survival emphasizes the fact that resistance to osimertinib therapy is inevitable. Acquired resistance mechanisms to osimertinib in EGFR-driven NSCLC include MET amplification, EGFR C797S mutation, neuroendocrine differentiation, small-cell lung carcinoma histologic transformation, PD-L1 and KRAS amplifications and ESR1-AKAP12 and MKRN1-BRAF translocations, as well as BRAF V600 mutation. This last one represents 3% of the acquired resistance mechanisms to osimertinib. In this review, we discuss the rationale for EGFR/BRAF/MEK co-inhibition in the light of a clinical case of EGFR-mutant NSCLC developing a BRAF V600 mutation as an acquired resistance mechanism to osimertinib and responding to the association of osimertinib plus dabrafenib and trametinib. Additionally, we discuss the acquired resistance mechanisms to osimertinib plus dabrafenib and trametinib combination in that context.
Project description:Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC.
Project description:The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.
Project description:Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are standard therapy for EGFR-mutant non-small cell lung cancer (NSCLC). Preclinically, HER3 ligand heregulin induces resistance to EGFR-TKIs, whereas the pan-human EGFR family inhibitor afatinib remains effective. Here, we examined whether soluble heregulin levels have clinical implications for EGFR-mutant NSCLC treated with EGFR-TKIs. Soluble heregulin was immunologically measured in plasma from EGFR-mutant NSCLC patients. Cutoff values were determined by 1-year PFS ROC curve. The relationship between soluble heregulin and PFS following EGFR-TKI therapy was analyzed by Cox proportional hazards model. Seventy-three patients were enrolled: 44 were treated with 1st-generation and 29 with 2nd-generation EGFR-TKIs. Soluble heregulin levels varied (range: 274-7,138 pg/mL, median: 739 pg/mL). Among patients treated with 1st-generation EGFR-TKIs, those with high heregulin (n = 20, >800 pg/mL) had a tendency for shorter PFS than those with low heregulin (n = 24, <800 pg/mL), with median PFS of 322 and 671 days, respectively. Cox proportional hazards model also indicated a trend toward resistance against 1st-generation EGFR-TKIs (HR: 1.825, 95% CI: 0.865-4.318) but not against 2nd-generation EGFR-TKIs. Soluble heregulin potentially correlates with resistance to EGFR-TKIs but not 2nd-generation EGFR-TKIs in patients with EGFR-mutant NSCLC.
Project description:Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) represent the standard of care for advanced non-small cell lung cancer (NSCLC) patients whose tumours harbor an activating EGFR mutation. Unfortunately, resistance to first- and second-generation EGFR-TKIs inevitably occurs in all patients with EGFR-mutant disease approximately within a year of treatment. At least half of these cases are attributed to the emergence of a secondary mutation in exon 20 of the EGFR gene, namely the T790M mutation. Third-generation EGFR-TKIs, including osimertinib and rociletinib, target this epigenic mutation, thus re-sensitizing cancer cells to EGFR-TKI inhibition. Osimertinib to date represents the standard of care in EGFR-mutant tumors after failure of first-line EGFR-TKIs by over-performing platinum-based chemotherapy in the recently reported AURA-3 randomized phase III clinical trial. The aim of this review is to describe the different treatment strategies that have been developed to reverse resistance to first- and second-line EGFR-TKIs, the corresponding mechanisms of resistance and the development of novel-generation EGFR-TKIs. We also discuss the challenge posed by the implementation of third-generation EGFR-TKIs earlier in the course of the disease in first-line treatment of EGFR-mutant NSCLC.
Project description:Recent findings suggest that a fraction of EGFR-mutant non-small-cell lung cancers (NSCLC) carry additional driver mutations that could potentially affect the activity of EGFR tyrosine kinase inhibitors (TKIs). We investigated the role of concomitant KRAS, NRAS, BRAF, PIK3CA, MET and ERBB2 mutations (other mutations) on the outcome of 133 EGFR mutant patients, who received first-line therapy with EGFR TKIs between June 2008 and December 2014. Analysis of genomic DNA by Next Generation Sequencing (NGS) revealed the presence of hotspot mutations in genes other than the EGFR, including KRAS, NRAS, BRAF, ERBB2, PIK3CA, or MET, in 29/133 cases (21.8%). A p.T790M mutation was found in 9/133 tumour samples (6.8%). The progression free survival (PFS) of patients without other mutations was 11.3 months vs. 7 months in patients with other mutations (log-rank test univariate: p = 0.047). In a multivariate Cox regression model including the presence of other mutations, age, performance status, smoking status, and the presence of p.T790M mutations, the presence of other mutations was the only factor significantly associated with PFS (Hazard Ratio 1.63, 95% CI 1.04⁻2.58; p = 0.035). In contrast, no correlation was found between TP53 mutations and patients' outcome. These data suggest that a subgroup of EGFR mutant tumours have concomitant driver mutations that might affect the activity of first-line EGFR TKIs.
Project description:Patients with EGFR mutations exhibit immunosuppressive microenvironments, limiting responsiveness to immunotherapy. We used digital spatial profiling to analyze non-small cell lung carcinomas in 25 patients before and after EGFR tyrosine kinase inhibitor (TKI) treatment, including 14 patients treated with first-line osimertinib, focusing on CD45-positive immune regions and pan-cytokeratin-positive tumor regions. Osimertinib treatment resulted in altered angiogenic pathways and immune cell proportions, with reduced plasma cells (22.2%-11.7%; p = 0.025) and increased macrophage infiltration (p = 0.145). The most predominant immune subtypes before and after treatment was the interferon-γ (IFN-γ)-dominant C2 subtype and the lymphocyte-depleted C4 subtype. Two patients who showed the opposite pattern, transiting from C4 to C2, had durable responses to subsequent atezolizumab/bevacizumab/carboplatin/paclitaxel treatment. Our results shed light on the immunomodulatory effects of osimertinib treatment and suggest that co-targeting angiogenesis and anti-programmed death (ligand) 1 might be effective in EGFR-TKI-resistant non-small cell lung cancer.