Weakly encoded memories due to acute sleep restriction can be rescued after one night of recovery sleep.
Ontology highlight
ABSTRACT: Sleep is thought to play a complementary role in human memory processing: sleep loss impairs the formation of new memories during the following awake period and, conversely, normal sleep promotes the strengthening of the already encoded memories. However, whether sleep can strengthen deteriorated memories caused by insufficient sleep remains unknown. Here, we showed that sleep restriction in a group of participants caused a reduction in the stability of EEG activity patterns across multiple encoding of the same event during awake, compared with a group of participants that got a full night's sleep. The decrease of neural stability patterns in the sleep-restricted group was associated with higher slow oscillation-spindle coupling during a subsequent night of normal sleep duration, thereby suggesting the instantiation of restorative neural mechanisms adaptively supporting cognition and memory. Importantly, upon awaking, the two groups of participants showed equivalent retrieval accuracy supported by subtle differences in the reinstatement of encoding-related activity: it was longer lasting in sleep-restricted individuals than in controls. In addition, sustained reinstatement over time was associated with increased coupling between spindles and slow oscillations. Taken together, these results suggest that the strength of prior encoding might be an important moderator of memory consolidation during sleep. Supporting this view, spindles nesting in the slow oscillation increased the probability of correct recognition only for weakly encoded memories. Current results demonstrate the benefit that a full night's sleep can induce to impaired memory traces caused by an inadequate amount of sleep.
SUBMITTER: Baena D
PROVIDER: S-EPMC6989495 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA