Unknown

Dataset Information

0

Dynamic Force Production Capacities Between Coronary Artery Disease Patients vs. Healthy Participants on a Cycle Ergometer.


ABSTRACT: Background:The force-velocity-power (FVP) profile is used to describe dynamic force production capacities, which is of great interest in training high performance athletes. However, FVP may serve a new additional tool for cardiac rehabilitation (CR) of coronary artery disease (CAD) patients. The aim of this study was to compare the FVP profile between two populations: CAD patients vs. healthy participants (HP). Methods:Twenty-four CAD patients (55.8 ± 7.1 y) and 24 HP (52.4 ± 14.8 y) performed two sprints of 8 s on a Monark cycle ergometer with a resistance corresponding to 0.4 N/kg × body mass for men and 0.3 N/kg × body mass for women. The theoretical maximal force (F 0) and velocity (V 0), the slope of the force-velocity relationship (S fv) and the maximal mechanical power output (P max) were determined. Results:The P max (CAD: 6.86 ± 2.26 W.kg-1 vs. HP: 9.78 ± 4.08 W.kg-1, p = 0.003), V 0 (CAD: 5.10 ± 0.82 m.s-1 vs. HP: 5.79 ± 0.97 m.s-1, p = 0.010), and F 0 (CAD: 1.35 ± 0.38 N.kg-1 vs. HP: 1.65 ± 0.51 N.kg-1, p = 0.039) were significantly higher in HP than in CAD. No significant difference appeared in Sfv (CAD: -0.27 ± 0.07 N.kg-1.m.s-1 vs. HS: -0.28 ± 0.07 N.kg-1.m.s-1, p = 0.541). Conclusion:The lower maximal power in CAD patients was related to both a lower V 0 and F 0. Physical inactivity, sedentary time and high cardiovascular disease (CVD) risk may explain this difference of force production at both high and low velocities between the two groups.

SUBMITTER: Fanget M 

PROVIDER: S-EPMC6993059 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic Force Production Capacities Between Coronary Artery Disease Patients vs. Healthy Participants on a Cycle Ergometer.

Fanget Marie M   Rossi Jérémy J   Samozino Pierre P   Morin Jean-Benoît JB   Testa Rodolphe R   Roche Frédéric F   Busso Thierry T   Laukkanen Jari Antero JA   Hupin David D  

Frontiers in physiology 20200124


<h4>Background</h4>The force-velocity-power (FVP) profile is used to describe dynamic force production capacities, which is of great interest in training high performance athletes. However, FVP may serve a new additional tool for cardiac rehabilitation (CR) of coronary artery disease (CAD) patients. The aim of this study was to compare the FVP profile between two populations: CAD patients vs. healthy participants (HP).<h4>Methods</h4>Twenty-four CAD patients (55.8 ± 7.1 y) and 24 HP (52.4 ± 14.8  ...[more]

Similar Datasets

| S-EPMC5825072 | biostudies-literature
| S-EPMC9760823 | biostudies-literature
| S-EPMC5593419 | biostudies-literature
| S-EPMC8047190 | biostudies-literature
| S-EPMC5710445 | biostudies-literature
| S-EPMC6015361 | biostudies-literature
| S-EPMC5824379 | biostudies-literature
| S-EPMC5730452 | biostudies-literature
| S-EPMC10528528 | biostudies-literature