Unknown

Dataset Information

0

Fine-Scale Haplotype Structure Reveals Strong Signatures of Positive Selection in a Recombining Bacterial Pathogen.


ABSTRACT: Identifying genetic variation in bacteria that has been shaped by ecological differences remains an important challenge. For recombining bacteria, the sign and strength of linkage provide a unique lens into ongoing selection. We show that derived alleles <300?bp apart in Neisseria gonorrhoeae exhibit more coupling linkage than repulsion linkage, a pattern that cannot be explained by limited recombination or neutrality as these couplings are significantly stronger for nonsynonymous alleles than synonymous alleles. This general pattern is driven by a small fraction of highly diverse genes, many of which exhibit evidence of interspecies horizontal gene transfer and an excess of intermediate frequency alleles. Extensive simulations show that two distinct forms of positive selection can create these patterns of genetic variation: directional selection on horizontally transferred alleles or balancing selection that maintains distinct haplotypes in the presence of recombination. Our results establish a framework for identifying patterns of selection in fine-scale haplotype structure that indicate specific ecological processes in species that recombine with distantly related lineages or possess coexisting adaptive haplotypes.

SUBMITTER: Arnold B 

PROVIDER: S-EPMC6993868 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fine-Scale Haplotype Structure Reveals Strong Signatures of Positive Selection in a Recombining Bacterial Pathogen.

Arnold Brian B   Sohail Mashaal M   Wadsworth Crista C   Corander Jukka J   Hanage William P WP   Sunyaev Shamil S   Grad Yonatan H YH  

Molecular biology and evolution 20200201 2


Identifying genetic variation in bacteria that has been shaped by ecological differences remains an important challenge. For recombining bacteria, the sign and strength of linkage provide a unique lens into ongoing selection. We show that derived alleles <300 bp apart in Neisseria gonorrhoeae exhibit more coupling linkage than repulsion linkage, a pattern that cannot be explained by limited recombination or neutrality as these couplings are significantly stronger for nonsynonymous alleles than s  ...[more]

Similar Datasets

| S-EPMC1182075 | biostudies-literature
| S-EPMC3514683 | biostudies-literature
| S-EPMC3932857 | biostudies-literature
| S-EPMC3953919 | biostudies-literature
| S-EPMC2831848 | biostudies-literature
| S-EPMC3511700 | biostudies-literature
| S-EPMC5542674 | biostudies-literature
| S-EPMC3553437 | biostudies-literature