Project description:BackgroundAlthough electrical impedance tomography (EIT) is widely used for monitoring regional ventilation distribution, reference values have yet to be established for clinical use. The present study aimed to evaluate the feasibility of creating reference values for standard EIT parameters for potential clinical application.MethodsA total of 75 participants with healthy lungs were included in this prospective study (male:female, 48:27; age, 34±14 years; height, 172±7 cm; weight, 73±12 kg). The subjects were examined during spontaneous breathing in the supine position. EIT measurements were performed at the level of the 4th intercostal space. Commonly used EIT-based parameters, including the center of ventilation (CoV), dorsal and most dorsal fractions of ventilation distribution (TVD and TVROI4 respectively), global inhomogeneity (GI) index, and standard deviation of regional ventilation delay index (RVDSD) were calculated.ResultsFollowing outlier detection, EIT data from 71 subjects were finally evaluated. The values of the evaluated parameters were: CoV, 48.7%±1.7%; TVD, 48.1%±5.4%; TVROI4, 7.1%±1.8%; GI, 0.49±0.04; and RVDSD, 7.0±2.0. The coefficients of variation for CoV and GI were low (0.03 and 0.07, respectively), but those for TVROI4 and RVDSD were comparatively high (0.26 and 0.28, respectively). None of the evaluated parameters showed a significant correlation with age. The GI index showed a weak but significant correlation with body mass index (R=0.29, P=0.01). The RVDSD was slightly higher in males than in females.ConclusionsOur study indicated that CoV and GI were stable parameters with small coefficients of variation in participants with healthy lungs. The creation of EIT parameter reference values for setting treatment targets may be feasible.
Project description:IntroductionGeneral anesthesia is associated with the development of atelectasis, which may affect lung ventilation. Electrical impedance tomography (EIT) is a noninvasive imaging tool that allows monitoring in real time the topographical changes in aeration and ventilation.ObjectiveTo evaluate the pattern of distribution of pulmonary ventilation through EIT before and after anesthesia induction in pediatric patients without lung disease undergoing nonthoracic surgery.MethodsThis was a prospective observational study including healthy children younger than 5 years who underwent nonthoracic surgery. Monitoring was performed continuously before and throughout the surgical period. Data analysis was divided into 5 periods: induction (spontaneous breathing, SB), ventilation-5min, ventilation-30min, ventilation-late and recovery-SB. In addition to demographic data, mechanical ventilation parameters were also collected. Ventilation impedance (Delta Z) and pulmonary ventilation distribution were analyzed cycle by cycle at the 5 periods.ResultsTwenty patients were included, and redistribution of ventilation from the posterior to the anterior region was observed with the beginning of mechanical ventilation: on average, the percentage ventilation distribution in the dorsal region decreased from 54%(IC95%:49-60%) to 49%(IC95%:44-54%). With the restoration of spontaneous breathing, ventilation in the posterior region was restored.ConclusionThere were significant pulmonary changes observed during anesthesia and controlled mechanical ventilation in children younger than 5 years, mirroring the findings previously described adults. Monitoring these changes may contribute to guiding the individualized settings of the mechanical ventilator with the goal to prevent postoperative complications.