ABSTRACT: Introduction:Galactose-deficient IgA1 (Gd-IgA1) and related IgA/IgG immune complexes have been identified as the key drivers in the pathogenesis of IgA nephropathy (IgAN). However, their roles in the development of secondary IgAN are still unknown. Methods:In this study, we measured the plasma Gd-IgA1 level, IgA/IgG complex, and Gd-IgA1 glomerular deposits in 100 patients with various kinds of secondary IgAN. Plasma Gd-IgA1 was measured using a lectin-based enzyme-linked immunosorbent assay, and Gd-IgA1 in glomerular deposits was examined by double immunofluorescent staining using its specific monoclonal antibody KM55. Results:Patients with secondary IgAN presented with higher plasma Gd-IgA1 levels compared to healthy controls (median, 354.61 U/ml; interquartile range [IQR], 323.93, 395.57 U/ml vs. median, 303.17 U/ml; IQR, 282.24, 337.92 U/ml, P < 0.001) or patients with other kidney diseases (median, 314.61 U/ml; IQR, 278.97, 343.55 U/ml, P < 0.001). A similar trend was observed in plasma IgA/IgG immune complexes or IgA1. There were no differences between secondary and primary IgAN in plasma Gd-IgA1 levels (median, 378.54 U/ml; IQR, 315.96, 398.33 U/ml, P = 0.700) and IgA1-IgG complex levels (median, 18.76 U/ml; IQR, 14.51, 22.83 U/ml vs. median, 19.11 U/ml; IQR, 13.21, 22.37 U/ml, P = 0.888). Co-localized IgA1 and Gd-IgA1 of both secondary and primary IgAN indicated that they both share the feature of Gd-IgA1 deposits on the glomerular mesangium. Conclusion:Our study strongly suggests that secondary IgAN shares a similar galactose-deficient IgA1-oriented pathogenesis with primary IgAN.