Developing a Model to Predict Hospital Encounters for Asthma in Asthmatic Patients: Secondary Analysis.
Ontology highlight
ABSTRACT: BACKGROUND:As a major chronic disease, asthma causes many emergency department (ED) visits and hospitalizations each year. Predictive modeling is a key technology to prospectively identify high-risk asthmatic patients and enroll them in care management for preventive care to reduce future hospital encounters, including inpatient stays and ED visits. However, existing models for predicting hospital encounters in asthmatic patients are inaccurate. Usually, they miss over half of the patients who will incur future hospital encounters and incorrectly classify many others who will not. This makes it difficult to match the limited resources of care management to the patients who will incur future hospital encounters, increasing health care costs and degrading patient outcomes. OBJECTIVE:The goal of this study was to develop a more accurate model for predicting hospital encounters in asthmatic patients. METHODS:Secondary analysis of 334,564 data instances from Intermountain Healthcare from 2005 to 2018 was conducted to build a machine learning classification model to predict the hospital encounters for asthma in the following year in asthmatic patients. The patient cohort included all asthmatic patients who resided in Utah or Idaho and visited Intermountain Healthcare facilities during 2005 to 2018. A total of 235 candidate features were considered for model building. RESULTS:The model achieved an area under the receiver operating characteristic curve of 0.859 (95% CI 0.846-0.871). When the cutoff threshold for conducting binary classification was set at the top 10.00% (1926/19,256) of asthmatic patients with the highest predicted risk, the model reached an accuracy of 90.31% (17,391/19,256; 95% CI 89.86-90.70), a sensitivity of 53.7% (436/812; 95% CI 50.12-57.18), and a specificity of 91.93% (16,955/18,444; 95% CI 91.54-92.31). To steer future research on this topic, we pinpointed several potential improvements to our model. CONCLUSIONS:Our model improves the state of the art for predicting hospital encounters for asthma in asthmatic patients. After further refinement, the model could be integrated into a decision support tool to guide asthma care management allocation. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID):RR2-10.2196/resprot.5039.
SUBMITTER: Luo G
PROVIDER: S-EPMC7001050 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA