Unknown

Dataset Information

0

A3 adenosine receptor activation mechanisms: molecular dynamics analysis of inactive, active, and fully active states.


ABSTRACT: We investigated the Gi-coupled A3 adenosine receptor (A3AR) activation mechanism by running 7.2 µs of molecular dynamics (MD) simulations. Based on homology to G protein-coupled receptor (GPCR) structures, three constitutively active mutant (CAM) and the wild-type (WT) A3ARs in the apo form were modeled. Conformational signatures associated with three different receptor states (inactive R, active R*, and bound to Gi protein mimic) were predicted by analyzing and comparing the CAMs with WT receptor and by considering site-directed mutagenesis data. Detected signatures that were correlated with receptor state included: Persistent salt-bridges involving key charged residues for activation (including a novel, putative ionic lock), rotameric state of conserved W6.48, and Na+ ions and water molecules present. Active-coupled state signatures similar to the X-ray structures of ?2 adrenergic receptor-Gs protein and A2AAR-mini-Gs and the recently solved cryo-EM A1AR-Gi complexes were found. Our MD analysis suggests that constitutive activation might arise from the D1073.49-R1083.50 ionic lock destabilization in R and the D1073.49-R1113.53 ionic lock stabilization in R* that presumably lowers the energy barrier associated with an R to R* transition. This study provides new opportunities to understand the underlying interactions of different receptor states of other Gi protein-coupled GPCRs.

SUBMITTER: Ciancetta A 

PROVIDER: S-EPMC7001149 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

A<sub>3</sub> adenosine receptor activation mechanisms: molecular dynamics analysis of inactive, active, and fully active states.

Ciancetta Antonella A   Rubio Priscila P   Lieberman David I DI   Jacobson Kenneth A KA  

Journal of computer-aided molecular design 20191122 11


We investigated the Gi-coupled A<sub>3</sub> adenosine receptor (A<sub>3</sub>AR) activation mechanism by running 7.2 µs of molecular dynamics (MD) simulations. Based on homology to G protein-coupled receptor (GPCR) structures, three constitutively active mutant (CAM) and the wild-type (WT) A<sub>3</sub>ARs in the apo form were modeled. Conformational signatures associated with three different receptor states (inactive R, active R*, and bound to Gi protein mimic) were predicted by analyzing and  ...[more]

Similar Datasets

| S-EPMC3983344 | biostudies-literature
| S-EPMC6239307 | biostudies-literature
| S-EPMC4308580 | biostudies-literature
| S-EPMC8757434 | biostudies-literature
| S-EPMC5436651 | biostudies-literature
| S-EPMC7560988 | biostudies-literature
| S-EPMC7343782 | biostudies-literature
| S-EPMC6498840 | biostudies-literature
| S-EPMC3894979 | biostudies-literature
| S-EPMC3685586 | biostudies-literature