Unknown

Dataset Information

0

Estimating growth patterns and driver effects in tumor evolution from individual samples.


ABSTRACT: Tumors accumulate thousands of mutations, and sequencing them has given rise to methods for finding cancer drivers via mutational recurrence. However, these methods require large cohorts and underperform for low recurrence. Recently, ultra-deep sequencing has enabled accurate measurement of VAFs (variant-allele frequencies) for mutations, allowing the determination of evolutionary trajectories. Here, based solely on the VAF spectrum for an individual sample, we report on a method that identifies drivers and quantifies tumor growth. Drivers introduce perturbations into the spectrum, and our method uses the frequency of hitchhiking mutations preceding a driver to measure this. As validation, we use simulation models and 993 tumors from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium with previously identified drivers. Then we apply our method to an ultra-deep sequenced acute myeloid leukemia (AML) tumor and identify known cancer genes and additional driver candidates. In summary, our framework presents opportunities for personalized driver diagnosis using sequencing data from a single individual.

SUBMITTER: Salichos L 

PROVIDER: S-EPMC7002450 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Estimating growth patterns and driver effects in tumor evolution from individual samples.

Salichos Leonidas L   Meyerson William W   Warrell Jonathan J   Gerstein Mark M  

Nature communications 20200205 1


Tumors accumulate thousands of mutations, and sequencing them has given rise to methods for finding cancer drivers via mutational recurrence. However, these methods require large cohorts and underperform for low recurrence. Recently, ultra-deep sequencing has enabled accurate measurement of VAFs (variant-allele frequencies) for mutations, allowing the determination of evolutionary trajectories. Here, based solely on the VAF spectrum for an individual sample, we report on a method that identifies  ...[more]

Similar Datasets

| S-EPMC3649931 | biostudies-literature
| S-EPMC1184060 | biostudies-literature
| S-EPMC6902017 | biostudies-literature
| S-EPMC6538351 | biostudies-literature
| S-EPMC1560056 | biostudies-literature
| S-EPMC4147919 | biostudies-literature
| S-EPMC5627126 | biostudies-literature
| S-EPMC3937336 | biostudies-literature
| S-EPMC5085172 | biostudies-literature
| S-EPMC7753957 | biostudies-literature