Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI.
Ontology highlight
ABSTRACT: BACKGROUND:The purpose of this study was to investigate the value of wavelet-transformed radiomic MRI in predicting the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) for patients with locally advanced breast cancer (LABC). METHODS:Fifty-five female patients with LABC who underwent contrast-enhanced MRI (CE-MRI) examination prior to NAC were collected for the retrospective study. According to the pathological assessment after NAC, patient responses to NAC were categorized into pCR and non-pCR. Three groups of radiomic textures were calculated in the segmented lesions, including (1) volumetric textures, (2) peripheral textures, and (3) wavelet-transformed textures. Six models for the prediction of pCR were Model I: group (1), Model II: group (1)?+?(2), Model III: group (3), Model IV: group (1)?+?(3), Model V: group (2)?+?(3), and Model VI: group (1)?+?(2)?+?(3). The performance of predicting models was compared using the area under the receiver operating characteristic (ROC) curves (AUC). RESULTS:The AUCs of the six models for the prediction of pCR were 0.816?±?0.033 (Model I), 0.823?±?0.020 (Model II), 0.888?±?0.025 (Model III), 0.876?±?0.015 (Model IV), 0.885?±?0.030 (Model V), and 0.874?±?0.019 (Model VI). The performance of four models with wavelet-transformed textures (Models III, IV, V, and VI) was significantly better than those without wavelet-transformed textures (Model I and II). In addition, the inclusion of volumetric textures or peripheral textures or both did not result in any improvements in performance. CONCLUSIONS:Wavelet-transformed textures outperformed volumetric and/or peripheral textures in the radiomic MRI prediction of pCR to NAC for patients with LABC, which can potentially serve as a surrogate biomarker for the prediction of the response of LABC to NAC.
SUBMITTER: Zhou J
PROVIDER: S-EPMC7003343 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA