Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry.
Ontology highlight
ABSTRACT: Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identified. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identified osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The findings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species.
SUBMITTER: Lee SY
PROVIDER: S-EPMC7005315 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA