Long Noncoding RNA FOXD2-AS1 Promotes the Malignancy of Cervical Cancer by Sponging MicroRNA-760 and Upregulating Hepatoma-Derived Growth Factor.
Ontology highlight
ABSTRACT: Although the functions of long noncoding RNA (lncRNA) called FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) have been well studied in multiple human cancer types, its expression status and detailed roles in cervical cancer remain unknown and merit investigation. This study was aimed at assessing FOXD2-AS1 expression in cervical cancer and at determining its effects on the aggressive behavior of cervical cancer in vitro and in vivo. Expression of FOXD2-AS1 in cervical cancer tissues and cell lines was determined via reverse-transcription quantitative PCR. The effects of FOXD2-AS1 on cervical cancer cells were examined by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flow-cytometric analysis, migration and invasion assays, and an in vivo tumorigenicity assay. FOXD2-AS1 was found to be significantly upregulated in cervical cancer tissues and cell lines. High FOXD2-AS1 expression was notably linked with the Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and depth of cervical invasion in patients with cervical cancer. Kaplan-Meier survival analysis revealed significantly shorter overall survival of patients when the tumor expression of FOXD2-AS1 was higher in comparison with those in patients with lower FOXD2-AS1 expression. In vitro functional assays revealed that downregulation of FOXD2-AS1 led to suppression of proliferation, migration, and invasiveness as well as to the induction of apoptosis of cervical cancer cells. In addition, FOXD2-AS1 silencing hindered tumor growth in vivo. Mechanism investigation revealed that FOXD2-AS1 functioned as a molecular sponge of microRNA-760 (miR-760). Furthermore, hepatoma-derived growth factor (HDGF) was validated as a direct target gene of miR-760 in cervical cancer cells. Moreover, an miR-760 knockdown reversed the effects of FOXD2-AS1 silencing on cervical cancer cells. FOXD2-AS1 possesses significant oncogenic activity in cervical cancer progression; this activity is mediated by sponging of miR-760 with consequent upregulation of HDGF. The FOXD2-AS1-miR-760-HDGF axis might harbor promising targets for novel treatment strategies of cervical cancer.
SUBMITTER: Dou X
PROVIDER: S-EPMC7005577 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA