Unknown

Dataset Information

0

Regimes of Head-On Collisions of Equal-Sized Binary Droplets.


ABSTRACT: Through molecular dynamics simulations, head-on collision processes of two identical droplets with a diameter of 10.9 nm are elaborately scrutinized over a wide range of impact Weber numbers (from 6.7 to 1307) both in vacuum and in an ambient of nitrogen gas. As the impact Weber number exceeds a certain critical value, a hole or multiple holes in apparently random locations are observed in the disklike structure formed by two colliding droplets. We name this a new "hole regime" of droplet collisions, which has not yet been reported in previous studies. As the impact Weber number increases, the number of holes increases. The hole or holes may disappear unless a second critical impact Weber number is exceeded, when the merged droplet is likely to experience dramatic shattering. It is also found that the existence of ambient gas provides a "cushion effect" which resists droplet deformation, thus delaying or even preventing the appearance of hole formation and shattering regimes. Moreover, increasing ambient pressure suppresses hole formation. A model based on energy balance is proposed to predict droplet behaviors, which provides a more accurate estimate of the maximum spreading factor compared to previous models. Finally, we further extend the current nanoscale droplet collision regime map and analyze the similarities and dissimilarities between nano- and macroscale droplet collision. Our study extends the current understanding on nanodroplet collisions.

SUBMITTER: Zhang YR 

PROVIDER: S-EPMC7007249 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regimes of Head-On Collisions of Equal-Sized Binary Droplets.

Zhang Yi Ran YR   Luo Kai H KH  

Langmuir : the ACS journal of surfaces and colloids 20190624 27


Through molecular dynamics simulations, head-on collision processes of two identical droplets with a diameter of 10.9 nm are elaborately scrutinized over a wide range of impact Weber numbers (from 6.7 to 1307) both in vacuum and in an ambient of nitrogen gas. As the impact Weber number exceeds a certain critical value, a hole or multiple holes in apparently random locations are observed in the disklike structure formed by two colliding droplets. We name this a new "hole regime" of droplet collis  ...[more]

Similar Datasets

| S-EPMC6727607 | biostudies-literature
| S-EPMC8619499 | biostudies-literature
| S-EPMC5027914 | biostudies-literature
| S-EPMC5645759 | biostudies-literature
| S-EPMC6420552 | biostudies-literature
| S-EPMC7269647 | biostudies-literature
2021-05-20 | GSE174696 | GEO
| S-EPMC3946014 | biostudies-other
2021-05-20 | GSE174695 | GEO
2021-05-20 | GSE174693 | GEO