Unknown

Dataset Information

0

Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer.


ABSTRACT: As the area of small molecules interacting with RNA advances, general routes to provide bioactive compounds are needed as ligands can bind RNA avidly to sites that will not affect function. Small-molecule targeted RNA degradation will thus provide a general route to affect RNA biology. A non-oligonucleotide-containing compound was designed from sequence to target the precursor to oncogenic microRNA-21 (pre-miR-21) for enzymatic destruction with selectivity that can exceed that for protein-targeted medicines. The compound specifically binds the target and contains a heterocycle that recruits and activates a ribonuclease to pre-miR-21 to substoichiometrically effect its cleavage and subsequently impede metastasis of breast cancer to lung in a mouse model. Transcriptomic and proteomic analyses demonstrate that the compound is potent and selective, specifically modulating oncogenic pathways. Thus, small molecules can be designed from sequence to have all of the functional repertoire of oligonucleotides, including inducing enzymatic degradation, and to selectively and potently modulate RNA function in vivo.

SUBMITTER: Costales MG 

PROVIDER: S-EPMC7007575 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer.

Costales Matthew G MG   Aikawa Haruo H   Li Yue Y   Childs-Disney Jessica L JL   Abegg Daniel D   Hoch Dominic G DG   Pradeep Velagapudi Sai S   Nakai Yoshio Y   Khan Tanya T   Wang Kye Won KW   Yildirim Ilyas I   Adibekian Alexander A   Wang Eric T ET   Disney Matthew D MD  

Proceedings of the National Academy of Sciences of the United States of America 20200121 5


As the area of small molecules interacting with RNA advances, general routes to provide bioactive compounds are needed as ligands can bind RNA avidly to sites that will not affect function. Small-molecule targeted RNA degradation will thus provide a general route to affect RNA biology. A non-oligonucleotide-containing compound was designed from sequence to target the precursor to oncogenic microRNA-21 (pre-miR-21) for enzymatic destruction with selectivity that can exceed that for protein-target  ...[more]

Similar Datasets

| S-EPMC6100793 | biostudies-literature
| S-EPMC9264281 | biostudies-literature
| S-EPMC5810124 | biostudies-other
| S-EPMC5364451 | biostudies-literature
| S-EPMC4889373 | biostudies-literature
| S-EPMC10283424 | biostudies-literature
| S-EPMC3111415 | biostudies-literature
| S-EPMC2504313 | biostudies-literature
| S-EPMC9459246 | biostudies-literature
| S-EPMC4050589 | biostudies-literature