Ontology highlight
ABSTRACT:
SUBMITTER: Lahnemann D
PROVIDER: S-EPMC7007675 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
Lähnemann David D Köster Johannes J Szczurek Ewa E McCarthy Davis J DJ Hicks Stephanie C SC Robinson Mark D MD Vallejos Catalina A CA Campbell Kieran R KR Beerenwinkel Niko N Mahfouz Ahmed A Pinello Luca L Skums Pavel P Stamatakis Alexandros A Attolini Camille Stephan-Otto CS Aparicio Samuel S Baaijens Jasmijn J Balvert Marleen M Barbanson Buys de B Cappuccio Antonio A Corleone Giacomo G Dutilh Bas E BE Florescu Maria M Guryev Victor V Holmer Rens R Jahn Katharina K Lobo Thamar Jessurun TJ Keizer Emma M EM Khatri Indu I Kielbasa Szymon M SM Korbel Jan O JO Kozlov Alexey M AM Kuo Tzu-Hao TH Lelieveldt Boudewijn P F BPF Mandoiu Ion I II Marioni John C JC Marschall Tobias T Mölder Felix F Niknejad Amir A Rączkowska Alicja A Reinders Marcel M Ridder Jeroen de J Saliba Antoine-Emmanuel AE Somarakis Antonios A Stegle Oliver O Theis Fabian J FJ Yang Huan H Zelikovsky Alex A McHardy Alice C AC Raphael Benjamin J BJ Shah Sohrab P SP Schönhuth Alexander A
Genome biology 20200207 1
The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questio ...[more]