Unknown

Dataset Information

0

Multipolar spatial electric field modulation for freeform electroactive hydrogel actuation.


ABSTRACT: Electroactive hydrogels that exhibit large deformation in response to an electric field have received significant attention as a potential actuating material for soft actuators and artificial muscle. However, their mechanical actuation has been limited in simple bending or folding due to uniform electric field modulation. To implement complex movements, a pre-program, such as a hinge and a multilayer pattern, is usually required for the actuator in advance. Here, we propose a reprogrammable actuating method and sophisticated manipulation by using multipolar three-dimensional electric field modulation without pre-program. Through the multipolar spatial electric field modulator, which controls the polarity/intensity of the electric field in three-dimensions, complex three-dimensional (3D) actuation of single hydrogels are achieved. Also, air bubbles generated during operation in the conventional horizontal configuration are not an issue in the proposed new vertical configuration. We demonstrate soft robotic actuators, including basic bending mechanics in terms of controllability and reliability, and several 3D shapes having positive and negative curvature can easily be achieved in a single sheet, paving the way for continuously reconfigurable materials.

SUBMITTER: Choi MY 

PROVIDER: S-EPMC7015902 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multipolar spatial electric field modulation for freeform electroactive hydrogel actuation.

Choi Moon-Young MY   Shin Yerin Y   Lee Hu Seung HS   Kim So Yeon SY   Na Jun-Hee JH  

Scientific reports 20200212 1


Electroactive hydrogels that exhibit large deformation in response to an electric field have received significant attention as a potential actuating material for soft actuators and artificial muscle. However, their mechanical actuation has been limited in simple bending or folding due to uniform electric field modulation. To implement complex movements, a pre-program, such as a hinge and a multilayer pattern, is usually required for the actuator in advance. Here, we propose a reprogrammable actu  ...[more]

Similar Datasets

| S-EPMC7901916 | biostudies-literature
| S-EPMC6316925 | biostudies-literature
| S-EPMC5647406 | biostudies-literature
| S-EPMC5981312 | biostudies-literature
| S-EPMC6140629 | biostudies-literature
| S-EPMC3364810 | biostudies-other
| S-EPMC5155675 | biostudies-literature
| S-EPMC6303118 | biostudies-literature
| S-EPMC4585655 | biostudies-literature
| S-EPMC6404066 | biostudies-literature