Unknown

Dataset Information

0

Angiogenic Activity of Cytochalasin B-Induced Membrane Vesicles of Human Mesenchymal Stem Cells.


ABSTRACT: : The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown. OBJECTIVES:The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs. METHODS:The morphology of CIMVs-MSC was analyzed by scanning electron microscopy. The proteomic analysis, multiplex analysis, and immunostaining were used to characterize the molecular composition of the CIMVs-MSCs. The transfer of surface proteins from a donor to a recipient cell mediated by CIMVs-MSCs was demonstrated using immunostaining and confocal microscopy. The angiogenic potential of CIMVs-MSCs was evaluated using an in vivo approach of subcutaneous implantation of CIMVs-MSCs in mixture with Matrigel matrix. RESULTS:Human CIMVs-MSCs retain parental MSCs content, such as growth factors, cytokines, and chemokines: EGF, FGF-2, Eotaxin, TGF-?, G-CSF, Flt-3L, GM-CSF, Fractalkine, IFN?2, IFN-?, GRO, IL-10, MCP-3, IL-12p40, MDC, IL-12p70, IL-15, sCD40L, IL-17A, IL-1RA, IL-1a, IL-9, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IP-10, MCP-1, MIP_1a, MIP-1b, TNF-?, TNF-?, VEGF. CIMVs-MSCs also have the expression of surface receptors similar to those in parental human MSCs (CD90+, CD29+, CD44+, CD73+). Additionally, CIMVs-MSCs could transfer membrane receptors to the surfaces of target cells in vitro. Finally, CIMVs-MSCs can induce angiogenesis in vivo after subcutaneous injection into adult rats. CONCLUSIONS:Human CIMVs-MSCs have similar content, immunophenotype, and angiogenic activity to those of the parental MSCs. Therefore, we believe that human CIMVs-MSCs could be used for cell free therapy of degenerative diseases.

SUBMITTER: Gomzikova MO 

PROVIDER: S-EPMC7016674 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications


<b>:</b> The cytochalasin B-induced membrane vesicles (CIMVs) are suggested to be used as a vehicle for the delivery of therapeutics. However, the angiogenic activity and therapeutic potential of human mesenchymal stem/stromal cells (MSCs) derived CIMVs (CIMVs-MSCs) remains unknown.<h4>Objectives</h4>The objectives of this study were to analyze the morphology, size distribution, molecular composition, and angiogenic properties of CIMVs-MSCs.<h4>Methods</h4>The morphology of CIMVs-MSC was analyze  ...[more]

Similar Datasets

| S-EPMC5642572 | biostudies-literature
| S-EPMC7330035 | biostudies-literature
| S-EPMC7916789 | biostudies-literature
| S-EPMC10463845 | biostudies-literature
| S-EPMC7278066 | biostudies-literature
| S-EPMC9694503 | biostudies-literature
| S-EPMC9966134 | biostudies-literature
| S-EPMC5636128 | biostudies-literature
| S-EPMC5578095 | biostudies-literature
| S-EPMC7927269 | biostudies-literature