Unknown

Dataset Information

0

Binding and Regulation of Transcription by Yeast Ste12 Variants To Drive Mating and Invasion Phenotypes.


ABSTRACT: Amino acid substitutions are commonly found in human transcription factors, yet the functional consequences of much of this variation remain unknown, even in well-characterized DNA-binding domains. Here, we examine how six single-amino acid variants in the DNA-binding domain of Ste12-a yeast transcription factor regulating mating and invasion-alter Ste12 genome binding, motif recognition, and gene expression to yield markedly different phenotypes. Using a combination of the "calling-card" method, RNA sequencing, and HT-SELEX (high throughput systematic evolution of ligands by exponential enrichment), we find that variants with dissimilar binding and expression profiles can converge onto similar cellular behaviors. Mating-defective variants led to decreased expression of distinct subsets of genes necessary for mating. Hyper-invasive variants also decreased expression of subsets of genes involved in mating, but increased the expression of other subsets of genes associated with the cellular response to osmotic stress. While single-amino acid changes in the coding region of this transcription factor result in complex regulatory reconfiguration, the major phenotypic consequences for the cell appear to depend on changes in the expression of a small number of genes with related functions.

SUBMITTER: Zhou W 

PROVIDER: S-EPMC7017024 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Binding and Regulation of Transcription by Yeast Ste12 Variants To Drive Mating and Invasion Phenotypes.

Zhou Wei W   Dorrity Michael W MW   Bubb Kerry L KL   Queitsch Christine C   Fields Stanley S  

Genetics 20191206 2


Amino acid substitutions are commonly found in human transcription factors, yet the functional consequences of much of this variation remain unknown, even in well-characterized DNA-binding domains. Here, we examine how six single-amino acid variants in the DNA-binding domain of Ste12-a yeast transcription factor regulating mating and invasion-alter Ste12 genome binding, motif recognition, and gene expression to yield markedly different phenotypes. Using a combination of the "calling-card" method  ...[more]

Similar Datasets

2020-01-30 | GSE141713 | GEO
| PRJNA595929 | ENA
| S-EPMC1489142 | biostudies-literature
| S-EPMC2863410 | biostudies-literature
| S-EPMC1461059 | biostudies-other