Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica rapa L.).
Ontology highlight
ABSTRACT: To elucidate the effect of low temperature on anthocyanin biosynthesis in purple head Chinese cabbage, we analyzed anthocyanin accumulation and related gene expression in the seedlings of purple head Chinese cabbage, white head parent Chinese cabbage, and its purple male parent under a normal 25 °C temperature and a low 12 °C temperature. Anthocyanin accumulation in purple lines was strongly induced by low temperature, and the total anthocyanin content of seedlings was significantly enhanced. In addition, nearly all phenylpropanoid metabolic pathway genes (PMPGs) were down-regulated, some early biosynthesis genes (EBGs) were up-regulated, and nearly all late biosynthesis genes (LBGs) directly involved in anthocyanin biosynthesis showed higher expression levels in purple lines after low-temperature induction. Interestingly, a R2R3-MYB transcription factor (TF) gene 'BrMYB2' and a basic-helix-loop-helix (bHLH) regulatory gene 'BrTT8' were highly up-regulated in purple lines after low temperature induction, and two negative regulatory genes 'BrMYBL2.1' and 'BrLBD38.2' were up-regulated in the white line. BrMYB2 and BrTT8 may play important roles in co-activating the anthocyanin structural genes in purple head Chinese cabbage after low-temperature induction, whereas down-regulation of BrMYB2 and up-regulation of some negative regulators might be responsible for white head phenotype formation. Data presented here provide new understanding into the anthocyanin biosynthesis mechanism during low temperature exposure in Brassica crops.
SUBMITTER: He Q
PROVIDER: S-EPMC7017278 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA