Unknown

Dataset Information

0

Obstetric Ultrasonography to Detect Fetal Abnormalities in a Mouse Model for Zika Virus Infection.


ABSTRACT: In 2015 Zika virus (ZIKV) emerged for the first time in South America. The following ZIKV epidemic resulted in the appearance of a clinical phenotype with microcephaly and other severe malformations in newborns. So far, mechanisms of ZIKV induced damage to the fetus are not completely understood. Previous data suggest that ZIKV may bypass the placenta to reach the fetus. Thus, animal models for ZIKV infection are important to facilitate studies about ZIKV infection during pregnancy. Here, we used ultrasound based imaging (USI) to characterize ZIKV induced pathogenesis in the pregnant Type I interferon receptor-deficient (IFNAR-/-) mouse model. Based on USI we suggest the placenta to be a primary target organ of ZIKV infection enabling ZIKV spreading to the fetus. Moreover, in addition to direct infection of the fetus, the placental ZIKV infection may cause an indirect damage to the fetus through reduced uteroplacental perfusion leading to intrauterine growth retardation (IUGR) and fetal complications as early as embryonic day (ED) 12.5. Our data confirmed the capability of USI to characterize ZIKV induced modifications in mouse fetuses. Data from further studies using USI to monitor ZIKV infections will contribute to a better understanding of ZIKV infection in pregnant IFNAR-/- mice.

SUBMITTER: Forster D 

PROVIDER: S-EPMC7019633 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Obstetric Ultrasonography to Detect Fetal Abnormalities in a Mouse Model for Zika Virus Infection.

Forster Dominik D   Schwarz Jan Hendrik JH   Brosinski Katrin K   Kalinke Ulrich U   Sutter Gerd G   Volz Asisa A  

Viruses 20200107 1


In 2015 Zika virus (ZIKV) emerged for the first time in South America. The following ZIKV epidemic resulted in the appearance of a clinical phenotype with microcephaly and other severe malformations in newborns. So far, mechanisms of ZIKV induced damage to the fetus are not completely understood. Previous data suggest that ZIKV may bypass the placenta to reach the fetus. Thus, animal models for ZIKV infection are important to facilitate studies about ZIKV infection during pregnancy. Here, we use  ...[more]

Similar Datasets

| S-EPMC4858159 | biostudies-literature
| S-EPMC5953559 | biostudies-literature
| S-EPMC5931554 | biostudies-literature
| S-EPMC6049088 | biostudies-literature
| S-EPMC7033814 | biostudies-literature
| S-EPMC6218097 | biostudies-literature
| S-EPMC8377042 | biostudies-literature
| S-EPMC8377042 | biostudies-literature
| S-EPMC5853392 | biostudies-other
| S-EPMC5006689 | biostudies-literature