Unknown

Dataset Information

0

Modeling Challenges of Ebola Virus-Host Dynamics during Infection and Treatment.


ABSTRACT: Mathematical modeling of Ebola virus (EBOV)-host dynamics during infection and treatment in vivo is in its infancy due to few studies with frequent viral kinetic data, lack of approved antiviral therapies, and limited insight into the timing of EBOV infection of cells and tissues throughout the body. Current in-host mathematical models simplify EBOV infection by assuming a single homogeneous compartment of infection. In particular, a recent modeling study assumed the liver as the largest solid organ targeted by EBOV infection and predicted that nearly all cells become refractory to infection within seven days of initial infection without antiviral treatment. We compared our observations of EBOV kinetics in multiple anatomic compartments and hepatocellular injury in a critically ill patient with Ebola virus disease (EVD) with this model's predictions. We also explored the model's predictions, with and without antiviral therapy, by recapitulating the model using published inputs and assumptions. Our findings highlight the challenges of modeling EBOV-host dynamics and therapeutic efficacy and emphasize the need for iterative interdisciplinary efforts to refine mathematical models that might advance understanding of EVD pathogenesis and treatment.

SUBMITTER: Chertow DS 

PROVIDER: S-EPMC7019702 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modeling Challenges of Ebola Virus-Host Dynamics during Infection and Treatment.

Chertow Daniel S DS   Shekhtman Louis L   Lurie Yoav Y   Davey Richard T RT   Heller Theo T   Dahari Harel H  

Viruses 20200116 1


Mathematical modeling of Ebola virus (EBOV)-host dynamics during infection and treatment in vivo is in its infancy due to few studies with frequent viral kinetic data, lack of approved antiviral therapies, and limited insight into the timing of EBOV infection of cells and tissues throughout the body. Current in-host mathematical models simplify EBOV infection by assuming a single homogeneous compartment of infection. In particular, a recent modeling study assumed the liver as the largest solid o  ...[more]

Similar Datasets

| S-EPMC4391033 | biostudies-literature
| S-EPMC4561958 | biostudies-other
| S-EPMC3386161 | biostudies-literature
2020-09-23 | GSE158390 | GEO
| S-EPMC7347341 | biostudies-literature
2020-09-23 | GSE158442 | GEO
2020-09-23 | GSE158440 | GEO
| S-SCDT-EMBOJ-2020-105658 | biostudies-other
| S-EPMC4550587 | biostudies-literature
| S-EPMC5567060 | biostudies-literature