Unknown

Dataset Information

0

Tumor Time-Course Predicts Overall Survival in Non-Small Cell Lung Cancer Patients Treated with Atezolizumab: Dependency on Follow-Up Time.


ABSTRACT: The large heterogeneity in response to immune checkpoint inhibitors is driving the exploration of predictive biomarkers to identify patients who will respond to such treatment. We extended our previously suggested modeling framework of atezolizumab pharmacokinetics, IL18, and tumor size (TS) dynamics, to also include overall survival (OS). Baseline and model-derived variables were explored as predictors of OS in 88 patients with non-small cell lung cancer treated with atezolizumab. To investigate the impact of follow-up length on the inclusion of predictors of OS, four different censoring strategies were applied. The time-course of TS change was the most significant predictor in all scenarios, whereas IL18 was not significant. Identified predictors of OS were similar regardless of censoring strategy, although OS was underpredicted when patients were censored 5 months after last dose. The study demonstrated that the tumor-time course-OS relationship could be identified based on early phase I data.

SUBMITTER: Netterberg I 

PROVIDER: S-EPMC7020300 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tumor Time-Course Predicts Overall Survival in Non-Small Cell Lung Cancer Patients Treated with Atezolizumab: Dependency on Follow-Up Time.

Netterberg Ida I   Bruno René R   Chen Ya-Chi YC   Winter Helen H   Li Chi-Chung CC   Jin Jin Y JY   Friberg Lena E LE  

CPT: pharmacometrics & systems pharmacology 20200128 2


The large heterogeneity in response to immune checkpoint inhibitors is driving the exploration of predictive biomarkers to identify patients who will respond to such treatment. We extended our previously suggested modeling framework of atezolizumab pharmacokinetics, IL18, and tumor size (TS) dynamics, to also include overall survival (OS). Baseline and model-derived variables were explored as predictors of OS in 88 patients with non-small cell lung cancer treated with atezolizumab. To investigat  ...[more]

Similar Datasets

| S-EPMC7563743 | biostudies-literature
| S-EPMC6276896 | biostudies-literature
| S-EPMC8564559 | biostudies-literature
| S-EPMC5467921 | biostudies-literature
2005-01-18 | GSE1907 | GEO
| S-EPMC8520743 | biostudies-literature
| S-EPMC5943250 | biostudies-literature
| S-EPMC7242243 | biostudies-literature
| S-EPMC8631148 | biostudies-literature
| S-EPMC7556271 | biostudies-literature