Unknown

Dataset Information

0

Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-hydroxyapatite Based Composites for Bone Regeneration Application.


ABSTRACT: The nanocomposites were prepared by synthesizing (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TCNFs) or cellulose nanocrystals (CNCs) with hydroxyapatite (HA) in varying composition ratios in situ. These nanocomposites were first obtained from eggshell-derived calcium and phosphate of ammonium dihydrogen orthophosphate as precursors at a stoichiometric Ca/P ratio of 1.67 with ultrasonication and compressed further by a uniaxial high-pressure technique. Different spectroscopic, microscopic, and thermogravimetric analyses were used to evaluate their structural, crystalline, and morphological properties, while their mechanical properties were assessed by an indentation method. The contents of TCNF and CNC were shown to render the formation of the HA crystallites and thus influenced strongly on the composite nanostructure and further on the mechanical properties. In this sense, the TCNF-based composites with relatively higher contents (30 and 40 wt %) of semicrystalline and flexible TCNFs resulted in smoother and more uniformly distributed HA particles with good interconnectivity, a hardness range of 550-640 MPa, a compression strength range of 110-180 MPa, an elastic modulus of ~5 GPa, and a fracture toughness value of ~6 MPa1/2 in the range of that of cortical bone. Furthermore, all the composites did not induce cytotoxicity to human bone-derived osteoblast cells but rather improved their viability, making them promising for bone tissue regeneration in load-bearing applications.

SUBMITTER: Ingole VH 

PROVIDER: S-EPMC7022391 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-hydroxyapatite Based Composites for Bone Regeneration Application.

Ingole Vijay H VH   Vuherer Tomaž T   Maver Uroš U   Vinchurkar Aruna A   Ghule Anil V AV   Kokol Vanja V  

Nanomaterials (Basel, Switzerland) 20191220 1


The nanocomposites were prepared by synthesizing (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TCNFs) or cellulose nanocrystals (CNCs) with hydroxyapatite (HA) in varying composition ratios in situ. These nanocomposites were first obtained from eggshell-derived calcium and phosphate of ammonium dihydrogen orthophosphate as precursors at a stoichiometric Ca/P ratio of 1.67 with ultrasonication and compressed further by a uniaxial high-pressure technique. Differen  ...[more]

Similar Datasets

| S-EPMC9920716 | biostudies-literature
| S-EPMC8471633 | biostudies-literature
| S-EPMC10648255 | biostudies-literature
| S-EPMC8659966 | biostudies-literature
| S-EPMC8289173 | biostudies-literature
| S-EPMC7597806 | biostudies-literature
| S-EPMC8164647 | biostudies-literature
| S-EPMC8235522 | biostudies-literature
| S-EPMC8883951 | biostudies-literature