Design of Heat-Conductive hBN-PMMA Composites by Electrostatic Nano-Assembly.
Ontology highlight
ABSTRACT: Micro/nanoscale design of composite materials enables alteration of their properties for advanced functional materials. One of the biggest challenges in material design is the controlled decoration of composite materials with the desired functional additives. This study reports on and demonstrates the homogeneous decoration of hexagonal boron nitride (hBN) on poly(methylmethacrylate) (PMMA) and vice versa. The formation of the composite materials was conducted via a low environmental load and a low-energy-consuming, electrostatic nano-assembly method which also enabled the efficient usage of nano-sized additives. The hBN/PMMA and PMMA/hBN composites were fabricated in various size combinations that exhibited percolated and layer-oriented structures, respectively. The thermal conductivity behaviors of hBN/PMMA and PMMA/hBN composites that exhibited good microstructure were compared. The results showed that microstructural design of the composites enabled the modification of their heat-conducting property. This novel work demonstrated the feasibility of fabricating heat-conductive PMMA matrix composites with controlled decoration of hBN sheets, which may provide a platform for further development of heat-conductive polymeric materials.
SUBMITTER: Yokoi A
PROVIDER: S-EPMC7022472 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA