Unknown

Dataset Information

0

Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.


ABSTRACT: The adsorption characteristics of silver nanoparticles (AgNPs) on cellulose nanofibrils (CNFs) were investigated herein with different chemical compositions. Pure cellulose nanofibers (PCNFs), lignocellulose nanofibers (LCNFs) with different lignin contents (LCNF-20% and LCNF-31%), and holocellulose nanofibers (HCNFs) with hemicellulose were used in this study. Furthermore, CNFs and silver nitrate were mixed and reacted at different temperatures, and NaBH4 was used as the reducing agent. First, the effect of temperature on the adsorption of AgNPs on PCNF was studied. At an optimal temperature (45 °C), the effect of the chemical composition of CNF was studied. The overall properties were analyzed using UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The AgNPs were found to be spherical under all conditions with average diameter of 5.3 nm (PCNF), 5.6 nm (HCNF), 6.3 nm (LCNF-20%) and 6.6 nm (LCNF-31%). The amount of AgNPs adsorbed on the CNF was observed to vary, based on the chemical composition of the CNF. The adsorption amount of AgNPs was observed to increase in the order of LCNF-20% > PCNF > LCNF-31% > HCNF. The results indicated that phenolic hydroxyl groups present in LCNF significantly affected the adsorption of AgNPs.

SUBMITTER: Kwon GJ 

PROVIDER: S-EPMC7023221 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.

Kwon Gu-Joong GJ   Han Song-Yi SY   Park Chan-Woo CW   Park Ji-Soo JS   Lee En-Ah EA   Kim Nam-Hun NH   Alle Madhusudhan M   Bandi Rajkumar R   Lee Seung-Hwan SH  

Polymers 20200108 1


The adsorption characteristics of silver nanoparticles (AgNPs) on cellulose nanofibrils (CNFs) were investigated herein with different chemical compositions. Pure cellulose nanofibers (PCNFs), lignocellulose nanofibers (LCNFs) with different lignin contents (LCNF-20% and LCNF-31%), and holocellulose nanofibers (HCNFs) with hemicellulose were used in this study. Furthermore, CNFs and silver nitrate were mixed and reacted at different temperatures, and NaBH<sub>4</sub> was used as the reducing age  ...[more]

Similar Datasets

| S-EPMC10847643 | biostudies-literature
| S-EPMC9565832 | biostudies-literature
| S-EPMC6749602 | biostudies-literature
| S-EPMC10097791 | biostudies-literature
| S-EPMC8394195 | biostudies-literature
| S-EPMC6680576 | biostudies-literature
| S-EPMC10726366 | biostudies-literature
| S-EPMC8166254 | biostudies-literature
2024-11-20 | GSE282018 | GEO