Unknown

Dataset Information

0

Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane.


ABSTRACT: Surface modification of polyimides (PIs) using electrospinning would significantly improve the performance of TENGs because of the larger surface area of the electrospun friction layer. However, PIs generally have high solvent resistance, so it is complicated to convert them into nanofibers using electrospinning process. This study aims to fabricate PI nanofibers via simple, one-step electrospinning and utilize them as a friction layer of TENGs for better performance. PI nanofibers were directly electrospun from PI ink made of polyimide powder without any additional process. The effect of PI concentration on spinnability was investigated. Uniform and continuous nanofibrous structures were successfully produced at concentrations of 15?wt% and 20?wt%. Electrospun PI nanofibers were then utilized as a friction layer for TENGs. A TENG with 20?wt% produced an open circuit voltage of 753?V and a short circuit current of 10.79 ?A and showed a power density of 2.61?W?m-2 at a 100 M? load resistance. During tapping experiment of 10,000 cycles, the TENG could stably harvest electrical energy. The harvested energy from the proposed TENG is sufficient to illuminate more than 55 LEDs and drive small electronic devices, and the TENGs exhibit excellent performance as a wearable energy harvester.

SUBMITTER: Kim Y 

PROVIDER: S-EPMC7026082 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane.

Kim Yeongjun Y   Wu Xinwei X   Oh Je Hoon JH  

Scientific reports 20200217 1


Surface modification of polyimides (PIs) using electrospinning would significantly improve the performance of TENGs because of the larger surface area of the electrospun friction layer. However, PIs generally have high solvent resistance, so it is complicated to convert them into nanofibers using electrospinning process. This study aims to fabricate PI nanofibers via simple, one-step electrospinning and utilize them as a friction layer of TENGs for better performance. PI nanofibers were directly  ...[more]

Similar Datasets

| S-EPMC5768784 | biostudies-literature
| S-EPMC8741797 | biostudies-literature
| S-EPMC5935721 | biostudies-other
| S-EPMC6155244 | biostudies-literature
| S-EPMC5455672 | biostudies-other
| S-EPMC8021621 | biostudies-literature
| S-EPMC5719441 | biostudies-literature
| S-EPMC8285394 | biostudies-literature
| S-EPMC7601985 | biostudies-literature
| S-EPMC8122800 | biostudies-literature