Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings.
Ontology highlight
ABSTRACT: Short chain chlorinated paraffins (SCCPs) are widely distributed persistent organic pollutants (POPs). Airborne chlorodecanes were hypothesized to be transformed by reactive phytogenic volatile organic compounds (PVOCs) in our previous work. To test this hypothesis, PVOCs of pumpkin (Cucurbita maxima x C. moschata) were collected and reacted with 1,1,1,3,8,10,10,10-octachlorodecane in the air phase of a sealed glass bottle under illumination for 10 days (reaction system I, simulating atmospheric reaction conditions with PVOCs). The reaction control group (reaction system II) was set at the same conditions but only had chlorodecane (without PVOCs) inside the bottle. Transformation of SCCPs in the air phase of reaction control group was unexpectedly found. Results showed that 1,1,1,3,8,10,10,10-octachlorodecane was transformed to a great extent to C10Cl5-8, C9Cl6-8, and C8Cl7-8 in the air phase after 10-d illumination in both with and without the presence of PVOCs, which is explained by carbon chain decomposition, dechlorination and chlorine rearrangement products of the parent SCCP. Those transformation processes were increased to some extent by the PVOCs from pumpkin seedlings. This study provides the first experimental data on atmospheric transformation of SCCPs and also the first evidence that plant emissions (PVOCs) can increase the transformation of SCCPs in air under light and experimental conditions. It provides new insight into the potential transformation and fate of CPs in the environment.
SUBMITTER: Li Y
PROVIDER: S-EPMC7029796 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA