Unknown

Dataset Information

0

Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus.


ABSTRACT: Bacillus cereus is increasingly recognized as an opportunistic pathogen causing local and systemic infections. The causative strains typically produce three pore-forming enterotoxins. This study focusses on the tripartite non-hemolytic enterotoxin (Nhe). Until today, studies have tried to elucidate the structure, complex formation and cell binding mechanisms of the tripartite Nhe toxin. Here, we demonstrate the synthesis of the functional tripartite Nhe toxin using eukaryotic cell-free systems. Single subunits, combinations of two Nhe subunits as well as the complete tripartite toxin were tested. Functional activity was determined by hemolytic activity on sheep blood agar plates, planar lipid bilayer measurements as well as cell viability assessment using the MTT assay. Our results demonstrate that cell-free protein synthesis based on translationally active eukaryotic lysates is a platform technology for the fast and efficient synthesis of functionally active, multicomponent toxins.

SUBMITTER: Ramm F 

PROVIDER: S-EPMC7031377 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus.

Ramm Franziska F   Dondapati Srujan Kumar SK   Thoring Lena L   Zemella Anne A   Wüstenhagen Doreen Anja DA   Frentzel Hendrik H   Stech Marlitt M   Kubick Stefan S  

Scientific reports 20200219 1


Bacillus cereus is increasingly recognized as an opportunistic pathogen causing local and systemic infections. The causative strains typically produce three pore-forming enterotoxins. This study focusses on the tripartite non-hemolytic enterotoxin (Nhe). Until today, studies have tried to elucidate the structure, complex formation and cell binding mechanisms of the tripartite Nhe toxin. Here, we demonstrate the synthesis of the functional tripartite Nhe toxin using eukaryotic cell-free systems.  ...[more]

Similar Datasets

| S-EPMC3628865 | biostudies-literature
| S-EPMC91741 | biostudies-literature
| S-EPMC8623112 | biostudies-literature
| S-EPMC7005308 | biostudies-literature
| S-EPMC7527251 | biostudies-literature