Unknown

Dataset Information

0

Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca2+ entry-mediated turnover of focal adhesions.


ABSTRACT: BACKGROUND:Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. METHODS:Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. RESULTS:We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. CONCLUSION:Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer.

SUBMITTER: Huang HK 

PROVIDER: S-EPMC7033940 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca<sup>2+</sup> entry-mediated turnover of focal adhesions.

Huang Ho-Kai HK   Lin Yi-Hsin YH   Chang Heng-Ai HA   Lai Yi-Shyun YS   Chen Ying-Chi YC   Huang Soon-Cen SC   Chou Cheng-Yang CY   Chiu Wen-Tai WT  

Journal of biomedical science 20200221 1


<h4>Background</h4>Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown.<h4>Methods</  ...[more]

Similar Datasets

| S-EPMC7860125 | biostudies-literature
| S-EPMC8391525 | biostudies-literature
| S-EPMC2693300 | biostudies-literature
| S-EPMC8255033 | biostudies-literature
2017-01-17 | GSE93655 | GEO
| S-EPMC5563273 | biostudies-literature
| S-EPMC5928347 | biostudies-literature
| S-EPMC4577984 | biostudies-literature
| S-EPMC2919128 | biostudies-literature
| S-EPMC5439705 | biostudies-literature