Ontology highlight
ABSTRACT: Background
Hutchinson-Gilford Progeria syndrome (HGPS) is a rare lethal premature and accelerated aging disease caused by mutations in the lamin A/C gene. Nevertheless, the mechanisms of cellular damage, senescence, and accelerated aging in HGPS are not fully understood. Therefore, we aimed to screen potential key genes, pathways, and therapeutic agents of HGPS by using bioinformatics methods in this study.Methods
The gene expression profile of GSE113648 and GSE41751 were retrieved from the gene expression omnibus database and analyzed to identify the differentially expressed genes (DEGs) between HGPS and normal controls. Then, gene ontology and the Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. To construct the protein-protein interaction (PPI) network, we used STRING and Cytoscape to make module analysis of these DEGs. Besides, the connectivity map (cMAP) tool was used as well to predict potential drugs.Results
As a result, 180 upregulated DEGs and 345 downregulated DEGs were identified, which were significantly enriched in pathways in cancer and PI3K-Akt signaling pathway. The top centrality hub genes fibroblast growth factor 2, decorin, matrix metallopeptidase2, and Fos proto-oncogene, AP-1 transcription factor subunit were screened out as the critical genes among the DEGs from the PPI network. Dexibuprofen and parthenolide were predicted to be the possible agents for the treatment of HGPS by cMAP analysis.Conclusion
This study identified key genes, signal pathways and therapeutic agents, which might help us improve our understanding of the mechanisms of HGPS and identify some new therapeutic agents for HGPS.
SUBMITTER: Wang D
PROVIDER: S-EPMC7035007 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
Medicine 20200201 7
<h4>Background</h4>Hutchinson-Gilford Progeria syndrome (HGPS) is a rare lethal premature and accelerated aging disease caused by mutations in the lamin A/C gene. Nevertheless, the mechanisms of cellular damage, senescence, and accelerated aging in HGPS are not fully understood. Therefore, we aimed to screen potential key genes, pathways, and therapeutic agents of HGPS by using bioinformatics methods in this study.<h4>Methods</h4>The gene expression profile of GSE113648 and GSE41751 were retriev ...[more]