Omadacycline Efficacy against Enterococcus faecalis Isolated in China: In Vitro Activity, Heteroresistance, and Resistance Mechanisms.
Ontology highlight
ABSTRACT: This study aimed to evaluate the in vitro antimicrobial activity, heteroresistance emergence, and resistance mechanism of omadacycline (OMC) in clinical Enterococcus faecalis isolates from China. A total of 276 isolates were collected retrospectively in China from 2011 to 2015. The MICs of OMC, doxycycline (DOX), and minocycline (MIN) against E. faecalis were determined by broth microdilution. Tetracycline (TET)-specific resistance genes and multilocus sequence typing (MLST) of the isolates were investigated using PCR. The detection frequency of OMC heteroresistance in E. faecalis was evaluated with population analysis profiling (PAP). The mechanism of OMC heteroresistance and resistance in E. faecalis was examined by amplifying 30S ribosomal subunit genes, RNA sequencing (RNA-Seq), and in vitro recombination experiments. The OMC MICs of clinical E. faecalis isolates ranged from ?0.06 to 1.0?mg/liter, and 42% of the E. faecalis isolates with an OMC MIC of 1.0?mg/liter were found to be sequence type 16 (ST16). Six OMC-heteroresistant isolates with MIC values of ?0.5?mg/liter were detected among 238 E. faecalis isolates. The resistant subpopulations of heteroresistant isolates showed OMC MICs in the range of 2 to 4?mg/liter and were found without 30S ribosomal subunit gene mutations. Moreover, RNA sequencing and in vitro recombination experiments demonstrated that overexpression of a bone morphogenetic protein (BMP) family ATP-binding cassette (ABC) transporter substrate-binding protein, OG1RF_RS00630, facilitated OMC heteroresistance in E. faecalis In conclusion, OMC exhibited better activity against clinical E. faecalis isolates from China than that of DOX or MIN, and overexpression of OG1RF_RS00630 in E. faecalis facilitated the development of OMC heteroresistance.
SUBMITTER: Lin Z
PROVIDER: S-EPMC7038293 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA