Unknown

Dataset Information

0

Methodology and validation of a new tandem mass spectrometer method for the quantification of inorganic and organic 18O-phosphate species.


ABSTRACT: Phosphorus (P) fertilizers are crucial to achieve peak productivity in agricultural systems. However, the fate of P fertilizers via microorganism incorporation and the exchange processes between soil pools is not well understood. 18Oxygen-labelled phosphate (18O- Pi) can be tracked as it cycles through soil systems. Our study describes biological and geochemical P dynamics using a tandem mass spectrometry (MS/MS) method for the absolute quantification of 18O- Pi. Soil microcosms underwent three treatments: (i) 18O- Pi, (ii) unlabelled phosphate (16O- Pi) or (iii) Milli-Q control, dissolved in a bio-stimulatory solution. During a 6-week series the microcosms were sampled to measure P by Hedley sequential fractionation and DNA extraction samples digested to 3'-deoxynucleoside 5'-monophosphates (dNMP). A MS/MS attached to a HPLC analyzed each P-species through collision-induced dissociation. The resin-extractable and bicarbonate 18O- Pi and 16O- Pi fractions displayed similar precipitation and adsorption-desorption trends. Biotic activity measured in the NaOH and dNMP fractions rapidly delabelled 18O- Pi; however, the MS/MS measured some 18O that remained between the P backbone and deoxyribose sugars. After 6 weeks, the 18O- Pi had not reached the HCl soil pool, highlighting the long-term nature of P movement. Our methodology improves on previous isotopic tracking methods as endogenous P does not dilute the system, unlike 32P techniques, and measured total P is not a ratio, dissimilar from natural abundance techniques. Measuring 18O- Pi using MS/MS provides information to enhance land sustainability and stewardship practices regardless of soil type by understanding both the inorganic movement of P fertilizers and the dynamic P pool in microbial DNA.

SUBMITTER: Schryer A 

PROVIDER: S-EPMC7039501 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Methodology and validation of a new tandem mass spectrometer method for the quantification of inorganic and organic 18O-phosphate species.

Schryer Aimée A   Bradshaw Kris K   Siciliano Steven D SD  

PloS one 20200224 2


Phosphorus (P) fertilizers are crucial to achieve peak productivity in agricultural systems. However, the fate of P fertilizers via microorganism incorporation and the exchange processes between soil pools is not well understood. 18Oxygen-labelled phosphate (18O- Pi) can be tracked as it cycles through soil systems. Our study describes biological and geochemical P dynamics using a tandem mass spectrometry (MS/MS) method for the absolute quantification of 18O- Pi. Soil microcosms underwent three  ...[more]

Similar Datasets

| S-EPMC3518128 | biostudies-literature
| S-EPMC3676861 | biostudies-literature
2024-03-18 | GSE245758 | GEO
| S-EPMC2556025 | biostudies-literature
| S-EPMC3691076 | biostudies-literature
| S-EPMC3609708 | biostudies-literature
| S-EPMC4000571 | biostudies-literature
| S-EPMC3059105 | biostudies-literature
| S-EPMC4095805 | biostudies-literature
| S-EPMC3138073 | biostudies-literature