Unknown

Dataset Information

0

Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer.


ABSTRACT: Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabilizing the differentiation and homeostasis of gastric mucosal epithelial cells. Ion transporter dysfunction results in disordered ion transport, mucosa barrier dysfunction, and acid/base disturbances, causing gastric acid-related diseases such as chronic atrophic gastritis (CAG) and GC. This review summarizes the physiological functions of multiple ion transporters and channels in the stomach, including Cl- channels, Cl-/HCO3 - exchangers, sodium/hydrogen exchangers (NHEs), and potassium (K+) channels, and their pathophysiological relevance in GC.

SUBMITTER: Yuan D 

PROVIDER: S-EPMC7040404 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Physiological Significance of Ion Transporters and Channels in the Stomach and Pathophysiological Relevance in Gastric Cancer.

Yuan Dumin D   Ma Zhiyuan Z   Tuo Biguang B   Li Taolang T   Liu Xuemei X  

Evidence-based complementary and alternative medicine : eCAM 20200212


Gastric cancer (GC) is a highly invasive and fatal malignant disease that accounts for 5.7% of new global cancer cases and is the third leading cause of cancer-related death. Acid/base homeostasis is critical for organisms because protein and enzyme function, cellular structure, and plasma membrane permeability change with pH. Various ion transporters are expressed in normal gastric mucosal epithelial cells and regulate gastric acid secretion, ion transport, and fluid absorption, thereby stabili  ...[more]

Similar Datasets

2004-05-08 | GSE1368 | GEO
| S-EPMC6127633 | biostudies-literature
| S-EPMC6815098 | biostudies-literature
| S-EPMC10530364 | biostudies-literature
| S-EPMC8724336 | biostudies-literature
| S-EPMC3154572 | biostudies-literature
| S-EPMC4134430 | biostudies-literature
| S-EPMC9406945 | biostudies-literature
| S-EPMC7531167 | biostudies-literature
| S-EPMC6571023 | biostudies-literature