Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali.
Ontology highlight
ABSTRACT: Multicopper oxidase (MCO) genes comprise multigene families in bacteria, fungi, plants and animals. Two families of MCO genes, MCO1 (laccase1) and MCO2 (laccase2), are conserved among diverse insects and relatively well-characterized, whereas additional MCO genes, whose biological functions have been poorly understood, are also found in some insects. Previous studies reported that MCO1 participates in gut immunity and MCO2 plays important roles in cuticle sclerotization and pigmentation of insects. In mosquitoes, MCO2 was reported to be involved in eggshell sclerotization and pigmentation, on the ground that knockdown of MCO2 caused deformity and fragility of the eggshell. Here we identified a total of 7 MCO genes, including PsMCO1 and PsMCO2, and investigated their expression and function in the brown-winged green stinkbug Plautia stali. RNA interference (RNAi) knockdown of MCO genes by injecting double-stranded RNA (dsRNA) into nymphs revealed that MCO2, but not the other 6 MCOs, is required for cuticle sclerotization and pigmentation, and also for survival of P. stali. Trans-generational knockdown of MCO2 by injecting dsRNA into adult females (maternal RNAi) resulted in the production of unhatched eggs despite the absence of deformity or fragility of the eggshell. These results suggested that MCO2 plays an important role in sclerotization and pigmentation of the cuticle but not in eggshell integrity in P. stali. Maternal RNAi of any of the other 6 MCO genes and 3 tyrosinase genes affected neither survival nor eggshell integrity of P. stali. Contrary to the observations in the red flour beetle and the brown rice planthopper, RNAi knockdown of MCO6 (MCORP; Multicopper oxidase related protein) exhibited no lethal effects on P. stali. Taken together, our findings provide insight into the functional diversity and commonality of MCOs across hemipteran and other insect groups.
SUBMITTER: Nishide Y
PROVIDER: S-EPMC7044228 | biostudies-literature | 2020 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA