Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic Escherichia coli F4 shedding in artificially infected piglets.
Ontology highlight
ABSTRACT: The development of alternatives to antibiotics is crucial to limiting the incidence of antimicrobial resistance, especially in prophylactic and metaphylactic use to control post-weaning diarrhea (PWD). Feed additives, including bioactive compounds, could be a promising alternative. This study aimed to test two bioactive compounds, sodium salicylate (SA) and a chestnut extract (CE) containing hydrolysable tannins, on the occurrence of PWD. At weaning, 72 piglets were assigned to four treatments that combined two factors: CE supplementation (with 2% of CE (CE+) or without (CE-)) and SA supplementation (with 35 mg/kg BW of SA (SA+) or without (SA-)). Then, 4 days after weaning, all piglets were infected with a suspension at 108 CFU/ml of enterotoxigenic Escherichia coli (ETEC F4ac). Each piglet had free access to an electrolyte solution containing, or not, SA. This SA supplementation was administered for 5 days (i.e., from the day of infection (day 0) to 4 days post-infection (day 4). During the 2 weeks post-infection, supplementation with SA had no effect (P > 0.05) on growth performances nor on fecal scores. A significant SA × time interaction (P < 0.01) for fecal scores and the percentage of diarrhea indicated that piglets with SA did not recover faster and did have a second episode of diarrhea. In contrast to SA treatment, inclusion of CE increased (P < 0.05) growth performances and feed intake. In the first week post-infection, CE decreased (P < 0.001) the overall fecal scores, the percentage of piglets with diarrhea, the days in diarrhea, and ETEC shedding in the feces. There was a SA×CE interaction (P < 0.05) for ETEC shedding, suggesting a negative effect of combining SA with CE. This study highlighted that, in contrast to SA, CE could represent a promising alternative to antibiotics immediately after weaning for improving growth performance and reducing PWD.
SUBMITTER: Girard M
PROVIDER: S-EPMC7046202 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA