Unknown

Dataset Information

0

High Temperature can Change Root System Architecture and Intensify Root Interactions of Plant Seedlings.


ABSTRACT: Climate change could alter plant aboveground and belowground resource allocation. Compared with shoots, we know much less about how roots, especially root system architecture (RSA) and their interactions, may respond to temperature changes. Such responses could have great influence on species'acquisition of resources and their competition with neighbors. We used a gel-based transparent growth system to in situ observe the responses of RSA and root interactions of three common subtropical plant species seedlings in Asia differing in growth forms (herb, shrub, and tree) under a wide growth temperature range of 18-34°C, including low and supra-optimal temperatures. Results showed that the RSA, especially root depth and root width, of the three species varied significantly in response to increased temperature although the response of their aboveground shoot traits was very similar. Increased temperature was also observed to have little impact on shoot/root resource allocation pattern. The variations in RSA responses among species could lead to both the intensity and direction change of root interactions. Under high temperature, negative root interactions could be intensified and species with larger root size and fast early root expansion had competitive advantages. In summary, our findings indicate that greater root resilience play a key role in plant adapting to high temperature. The varied intensity and direction of root interactions suggest changed temperatures could alter plant competition. Seedlings with larger root size and fast early root expansion may better adapt to warmer climates.

SUBMITTER: Luo H 

PROVIDER: S-EPMC7054236 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

High Temperature can Change Root System Architecture and Intensify Root Interactions of Plant Seedlings.

Luo Hongxia H   Xu Han H   Chu Chengjin C   He Fangliang F   Fang Suqin S  

Frontiers in plant science 20200226


Climate change could alter plant aboveground and belowground resource allocation. Compared with shoots, we know much less about how roots, especially root system architecture (RSA) and their interactions, may respond to temperature changes. Such responses could have great influence on species'acquisition of resources and their competition with neighbors. We used a gel-based transparent growth system to <i>in situ</i> observe the responses of RSA and root interactions of three common subtropical  ...[more]

Similar Datasets

| S-EPMC8194105 | biostudies-literature
| S-EPMC8034872 | biostudies-literature
| S-EPMC3444351 | biostudies-literature
| S-EPMC10519072 | biostudies-literature
| S-EPMC8290196 | biostudies-literature
| S-EPMC6850102 | biostudies-literature
| S-EPMC5067582 | biostudies-literature
| S-EPMC9291931 | biostudies-literature
| S-EPMC7232511 | biostudies-literature
| S-EPMC6892842 | biostudies-literature