Unknown

Dataset Information

0

Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.


ABSTRACT: Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low electrical-to-mechanical transduction efficiency, and low optomechanical interaction rate. Here we demonstrate an on-chip piezo-optomechanical transducer that systematically addresses all these challenges to achieve nearly three orders of magnitude improvement in conversion efficiency over previous work. Our modulator demonstrates acousto-optic modulation with [Formula: see text] = 0.02 V. We show bidirectional conversion efficiency of [Formula: see text] with 3.3 ?W  red-detuned optical pump, and [Formula: see text] with 323 ?W blue-detuned pump. Further study of quantum transduction at millikelvin temperatures is required to understand how the efficiency and added noise are affected by reduced mechanical dissipation, thermal conductivity, and thermal capacity.

SUBMITTER: Jiang W 

PROVIDER: S-EPMC7054291 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.

Jiang Wentao W   Sarabalis Christopher J CJ   Dahmani Yanni D YD   Patel Rishi N RN   Mayor Felix M FM   McKenna Timothy P TP   Van Laer Raphaël R   Safavi-Naeini Amir H AH  

Nature communications 20200303 1


Efficient interconversion of both classical and quantum information between microwave and optical frequency is an important engineering challenge. The optomechanical approach with gigahertz-frequency mechanical devices has the potential to be extremely efficient due to the large optomechanical response of common materials, and the ability to localize mechanical energy into a micron-scale volume. However, existing demonstrations suffer from some combination of low optical quality factor, low elec  ...[more]

Similar Datasets

| S-EPMC10663453 | biostudies-literature
| S-EPMC4941791 | biostudies-literature
| S-EPMC5605717 | biostudies-literature
| S-EPMC9668908 | biostudies-literature
| S-EPMC10954543 | biostudies-literature
| S-EPMC11375771 | biostudies-literature
| S-EPMC5935717 | biostudies-literature
| S-EPMC7324619 | biostudies-literature
| S-EPMC7228956 | biostudies-literature
| S-EPMC10825865 | biostudies-literature