ABSTRACT: BACKGROUND:To investigate mosquito larval habitats and resistance to common insecticides in areas with high incidence rates of mosquito-borne diseases in Jining, Shandong Province, and to provide a scientific basis for the future prevention and control of mosquito-borne diseases and the rational use of insecticides. METHODS AND RESULTS:From June to September 2018, mosquito habitat characteristics and species compositions in Jintun town were studied through a cross-sectional survey. Larvae and pupae were collected in different habitats using the standard dipping technique. A total of 7,815 mosquitoes, comprising 7 species from 4 genera, were collected. Among them, Culex pipiens pallens (n = 5,336, 68.28%) was the local dominant species and found in all four habitats (rice paddies, irrigation channels, water containers, drainage ditches). There were 1,708 Cx. tritaeniorhynchus (21.85%), 399 Anopheles sinensis (5.11%), 213 Armigeres subalbatus (2.72%), 124 Aedes albopictus (1.59%), and 35 other (Cx. bitaeniorhynchus and Cx. halifaxii) (0.45%) mosquito samples collected. Spearman correlation analysis was employed to evaluate the relationship between larval density and the physicochemical characteristics of the breeding habitat. It was found that the larval density of Cx. tritaeniorhynchus correlated positively with water depth (r = 0.927 p = 0.003), the larval density of An. sinensis correlated positively with dissolved oxygen (DO) (r = 0.775 p = 0.041) and the larval density of Cx. p. pallens correlated positively with ammonia nitrogen (r = 0.527 p = 0.002). Resistance bioassays were carried out on the dominant populations of Cx. p. pallens: mosquitoes presented very high resistance to cypermethrin and deltamethrin, moderate resistance to dichlorvos (DDVP), and low resistance to Bacillus thuringiensis israelensis (Bti), with decreased susceptibility to propoxur. CONCLUSION:We showed that mosquito species vary across habitat type and that the mosquito larval density correlated positively with certain physicochemical characteristics in different habitats. In addition, Cx. p. pallens developed different levels of resistance to five insecticides. Vector monitoring should be strengthened after an epidemic, and further research should be conducted to scientifically prevent and kill mosquitoes.