Ontology highlight
ABSTRACT: Background
Ethanol causes developmental neurotoxicity partly by blocking adhesion mediated by the L1 neural cell adhesion molecule. This action of ethanol is antagonized by femtomolar concentrations of the neuropeptide NAPVSIPQ (NAP), an active fragment of the activity-dependent neuroprotective protein (ADNP). How femtomolar concentrations of NAP antagonize millimolar concentrations of ethanol is unknown. L1 sensitivity to ethanol requires L1 association with ankyrin-G; therefore, we asked whether NAP promotes the dissociation of ankyrin-G and L1.Methods
L1-ankyrin-G association was studied using immunoprecipitation, Western blotting, and immunofluorescence in NIH/3T3 cells transfected with wild-type and mutated human L1 genes. Phosphorylation of the ankyrin binding motif in the L1 cytoplasmic domain was studied after NAP treatment of intact cells, rat brain homogenates, and purified protein fragments.Results
Femtomolar concentrations of NAP stimulated the phosphorylation of tyrosine-1229 (L1-Y1229) at the ankyrin binding motif of the L1 cytoplasmic domain, leading to the dissociation of L1 from ankyrin-G and the spectrin-actin cytoskeleton. NAP increased the association of L1 and EphB2 and directly activated EphB2 phosphorylation of L1-Y1229. These actions of NAP were reproduced by P7A-NAP, a NAP variant that also blocks the teratogenic actions of ethanol, but not by I6A-NAP, which does not block ethanol teratogenesis as potently. Finally, knockdown of EPHB2 prevented ethanol inhibition of L1 adhesion in NIH/3T3 cells.Conclusions
NAP potently antagonizes ethanol inhibition of L1 adhesion by stimulating EphB2 phosphorylation of L1-Y1229. EphB2 plays a critical role in synaptic development; its potent activation by NAP suggests that ADNP may mediate synaptic development partly by activating EphB2.
SUBMITTER: Dou X
PROVIDER: S-EPMC7056560 | biostudies-literature |
REPOSITORIES: biostudies-literature