Unknown

Dataset Information

0

Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90.


ABSTRACT: Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances, respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or complementary strategy to antibiotics for the control of pneumococal infections. We tested the antimicrobial activity of 37 bacteriocinogenic LAB, isolated from food and other sources, against clinical S. pneumoniae strains. Streptococcus infantarius subsp. infantarius LP90, isolated from Venezuelan water-buffalo milk, was selected because of its broad and strong anti-pneumococcal spectrum. The in vitro safety assessment of S. infantarius LP90 revealed that it may be considered avirulent. The analysis of a 19,539-bp cluster showed the presence of 29 putative open reading frames (ORFs), including the genes encoding 8 new class II-bacteriocins, as well as the proteins involved in their secretion, immunity and regulation. Transcriptional analyses evidenced that the induction factor (IF) structural gene, the bacteriocin/IF transporter genes, the bacteriocin structural genes and most of the bacteriocin immunity genes were transcribed. MALDI-TOF analyses of peptides purified using different multichromatographic procedures revealed that the dairy strain S. infantarius LP90 produces at least 6 bacteriocins, including infantaricin A1, a novel anti-pneumococcal two-peptide bacteriocin.

SUBMITTER: Campanero C 

PROVIDER: S-EPMC7058333 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90.

Campanero Cristina C   Muñoz-Atienza Estefanía E   Diep Dzung B DB   Feito Javier J   Arbulu Sara S   Del Campo Rosa R   Nes Ingolf F IF   Hernández Pablo E PE   Herranz Carmen C   Cintas Luis M LM  

PloS one 20200305 3


Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances, respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or  ...[more]

Similar Datasets

| S-EPMC3318475 | biostudies-literature
| S-EPMC6881063 | biostudies-literature
| S-EPMC4881808 | biostudies-literature
| S-EPMC3640971 | biostudies-literature
| S-EPMC5766739 | biostudies-literature
| S-EPMC6003927 | biostudies-literature
| PRJNA454550 | ENA
| S-EPMC4340893 | biostudies-literature
| PRJNA778113 | ENA
| PRJNA34967 | ENA