Transcriptome analysis reveals the difference between "healthy" and "common" aging and their connection with age-related diseases.
Ontology highlight
ABSTRACT: A key goal of aging research was to understand mechanisms underlying healthy aging and develop methods to promote the human healthspan. One approach is to identify gene regulations unique to healthy aging compared with aging in the general population (i.e., "common" aging). Here, we leveraged Genotype-Tissue Expression (GTEx) project data to investigate "healthy" and "common" aging gene expression regulations at a tissue level in humans and their interconnection with diseases. Using GTEx donors' disease annotations, we defined a "healthy" aging cohort for each tissue. We then compared the age-associated genes derived from this cohort with age-associated genes from the "common" aging cohort which included all GTEx donors; we also compared the "healthy" and "common" aging gene expressions with various disease-associated gene expressions to elucidate the relationships among "healthy," "common" aging and disease. Our analyses showed that 1. GTEx "healthy" and "common" aging shared a large number of gene regulations; 2. Despite the substantial commonality, "healthy" and "common" aging genes also showed distinct function enrichment, and "common" aging genes had a higher enrichment for disease genes; 3. Disease-associated gene regulations were overall different from aging gene regulations. However, for genes regulated by both, their regulation directions were largely consistent, implying some aging processes could increase the susceptibility to disease development; and 4. Possible protective mechanisms were associated with some "healthy" aging gene regulations. In summary, our work highlights several unique features of GTEx "healthy" aging program. This new knowledge could potentially be used to develop interventions to promote the human healthspan.
SUBMITTER: Zeng L
PROVIDER: S-EPMC7059150 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA