Unknown

Dataset Information

0

Accounting for Strong Ligand Sensitivity in Pd-Catalyzed ?-Arylation of Enolates from Ketones, Esters, and Nitroalkanes.


ABSTRACT: The mechanism of the Pd-catalyzed ?-arylation of three model enolates is studied focusing on an analysis of their very different reactivities. In particular, the low reactivity of nitronates under standard arylation conditions and their high sensitivity to the nature of catalytic systems are addressed. The three canonical steps for each of the reaction systems are examined, and key trends surrounding the stability of intermediates and transition states are delineated. A framework based on molecular orbital analyses and the hard-soft acid-base (HSAB) theory is advanced to explain the observed reactivity trends. The local softness of the enolates was found to be a key parameter controlling the energy of the enolate-catalyst complexes. The low reactivity of the nitroalkane enolates is attributed to slow reductive elimination, a consequence of the hard nature of the nitronate. Analysis of reactivity of nitromethane in ?-arylation with Pd catalysts containing Buchwald ligands reveals destabilization of the L2Pd species as a major non-enolate-specific acceleration mechanism as well as less electron-rich ligands accelerating reductive elimination as a nitronate-specific mechanism. The corresponding energetics and feasibility that favor C-arylation versus O-arylation are outlined.

SUBMITTER: Tcyrulnikov S 

PROVIDER: S-EPMC7061083 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accounting for Strong Ligand Sensitivity in Pd-Catalyzed α-Arylation of Enolates from Ketones, Esters, and Nitroalkanes.

Tcyrulnikov Sergei S   Kozlowski Marisa C MC  

The Journal of organic chemistry 20200212 5


The mechanism of the Pd-catalyzed α-arylation of three model enolates is studied focusing on an analysis of their very different reactivities. In particular, the low reactivity of nitronates under standard arylation conditions and their high sensitivity to the nature of catalytic systems are addressed. The three canonical steps for each of the reaction systems are examined, and key trends surrounding the stability of intermediates and transition states are delineated. A framework based on molecu  ...[more]

Similar Datasets

| S-EPMC3800138 | biostudies-other
| S-EPMC4210146 | biostudies-literature
| S-EPMC8009508 | biostudies-literature
| S-EPMC5238525 | biostudies-other
| S-EPMC9299137 | biostudies-literature
| S-EPMC5598777 | biostudies-literature
| S-EPMC3406859 | biostudies-other
| S-EPMC4159307 | biostudies-literature
| S-EPMC9803853 | biostudies-literature
| S-EPMC3689219 | biostudies-literature