Unknown

Dataset Information

0

Improving brain age prediction models: incorporation of amyloid status in Alzheimer's disease.


ABSTRACT: Brain age prediction is a machine learning method that estimates an individual's chronological age from their neuroimaging scans. Brain age indicates whether an individual's brain appears "older" than age-matched healthy peers, suggesting that they may have experienced a higher cumulative exposure to brain insults or were more impacted by those pathological insults. However, contemporary brain age models include older participants with amyloid pathology in their training sets and thus may be confounded when studying Alzheimer's disease (AD). We showed that amyloid status is a critical feature for brain age prediction models. We trained a model on T1-weighted MRI images participants without amyloid pathology. MRI data were processed to estimate gray matter density voxel-wise, which were then used to predict chronological age. Our model performed accurately comparable to previous models. Notably, we demonstrated more significant differences between AD diagnostic groups than other models. In addition, our model was able to delineate significant differences in brain age relative to chronological age between cognitively normal individuals with and without amyloid. Incorporation of amyloid status in brain age prediction models ultimately improves the utility of brain age as a biomarker for AD.

SUBMITTER: Ly M 

PROVIDER: S-EPMC7064421 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improving brain age prediction models: incorporation of amyloid status in Alzheimer's disease.

Ly Maria M   Yu Gary Z GZ   Karim Helmet T HT   Muppidi Nishita R NR   Mizuno Akiko A   Klunk William E WE   Aizenstein Howard J HJ  

Neurobiology of aging 20191114


Brain age prediction is a machine learning method that estimates an individual's chronological age from their neuroimaging scans. Brain age indicates whether an individual's brain appears "older" than age-matched healthy peers, suggesting that they may have experienced a higher cumulative exposure to brain insults or were more impacted by those pathological insults. However, contemporary brain age models include older participants with amyloid pathology in their training sets and thus may be con  ...[more]

Similar Datasets

| S-EPMC8193935 | biostudies-literature
| S-EPMC3634198 | biostudies-other
| S-EPMC9997187 | biostudies-literature
2023-03-20 | GSE178304 | GEO
2017-08-28 | PXD006552 | Pride
| S-EPMC7154147 | biostudies-literature
| S-EPMC8021919 | biostudies-literature
| S-EPMC10578328 | biostudies-literature
| S-EPMC8026112 | biostudies-literature
| S-EPMC3814033 | biostudies-literature