Ontology highlight
ABSTRACT: Background
Food allergy is associated with a high personal health and economic burden. For immunomodulation toward tolerance, food compounds could be chemically modified, for example, by posttranslational protein nitration, which also occurs via diet-derived nitrating agents in the gastrointestinal tract.Objective
We sought to analyze the effect of pretreatment with nitrated food proteins on the immune response in a mouse food allergy model and on human monocyte-derived dendritic cells (moDCs) and PBMCs.Methods
The model allergen ovalbumin (OVA) was nitrated in different nitration degrees, and the secondary structures of proteins were determined by circular dichroism (CD). Allergy-preventive treatment with OVA, nitrated OVA (nOVA), and maximally nitrated OVA (nOVAmax) were performed before mice were immunized with or without gastric acid-suppression medication. Antibody levels, regulatory T-cell (Treg) numbers, and cytokine levels were evaluated. Human moDCs or PBMCs were incubated with proteins and evaluated for expression of surface markers, cytokine production, and proliferation of Th2 as well as Tregs.Results
In contrast to OVA and nOVA, the conformation of nOVAmax was substantially changed. nOVAmax pretreated mice had decreased IgE as well as IgG1 and IgG2a levels and Treg numbers were significantly elevated, while cytokine levels remained at baseline level. nOVAmax induced a regulatory DC phenotype evidenced by a decrease of the activation marker CD86 and an increase in IL-10 production and was associated with a higher proliferation of memory Tregs.Conclusion
Oral pretreatment with highly nitrated proteins induces a tolerogenic immune response in the food allergy model and in human immune cells.
SUBMITTER: Samadi N
PROVIDER: S-EPMC7064937 | biostudies-literature |
REPOSITORIES: biostudies-literature